Niels Henrik Abel Norway, 1802-1829

The quadratic formula, which gives us the roots of any
degree-2 polynomial from its coefficients, is among the
best-known theorems in mathematics, with a 4000-year
history. In the early 1500s, del Ferro and Tartaglia, inde-
pendently, opened a new era in math by inventing the
cubic formula that solves the corresponding problem
in degree 3, and Ferrari had finished off the degree-4
problem by 1540. It was natural to expect progress to
continue, but by the time Niels Henrik Abel was born in
1802, there was still no quintic formula.

Abel’s childhood was very difficult. His father was a
politician who supported Norwegian independence
(from first Denmark, then Sweden). Abel was home-
schooled, taught by his father, but this was a bad sit-
uation: the father would eventually lose his seat in the
legislature for making false accusations against other members and for drinking too
much. In 1815, with his family in desperate financial trouble, Abel was sent to a bad
boarding school: the math teacher was fired for beating a student to death!

Niels Henrik Abel

As a silver lining to that tragedy, Abel got a new math teacher who was excellent. He
recognized Abel’s ability and introduced him to more advanced topics, including active
research in mathematics. He also got Abel a scholarship at the University of Christiania
(now Oslo), and collected enough donations that Abel was actually able to enroll. Be-
fore graduating (in two years), Abel thought he had discovered the long-sought quintic
formula; sadly, when he had to use it to do an example, he realized he’d made a mistake.

At the University, Abel again met a teacher who supported him financially, which gave
him the freedom to work on math. In these years, he was the first to solve an integral
equation (think of a differential equation, but backwards). More importantly, in 1823,
he solved the problem of quintic polynomials in a way that absolutely no one had ex-
pected: It was impossible to solve degree-5 polynomial equations using only arithmetic
operations and radicals. Not only that, but there was a very surprising reason: There
are specific polynomials, such as z°> — x — 1, whose roots can’t be written down at all in
terms of radicals. He also showed that a polynomial would be solvable by radicals when
arelated group’s operation was commutative; such groups are now called “abelian.”

The next year, with help from his school and the Norwegian government, he traveled to
France and Germany to talk with the important mathematicians there, but the trip was
discouraging: Cauchy barely looked at Abel’s work, Gauss didn’t read it at all, and Abel
could only afford one meal a day. Back at home, he continued to do good work, but he
became seriously ill the next year, while traveling by sled to visit his fiancée for Christmas,
and died a few months later at the age of 26.
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Apollonius Greece, 262-190 BCE

Apollonius of Perga lived in the ancient Greek empire,
though he was born in what is now Turkey and died in
the city of Alexandria, which is now in Egypt. Alexandria
had been the home of Euclid, and the site of the famous
Library; Apollonius went there to learn from Euclid’s
students, and then became a teacher at the University.

Apollonius is famous as the author of Conics, an eight-
book study of the conic sections (cross-sections of a
cone). It is the oldest surviving work on the subject, and
the original source of the words “ellipse,” “parabola,”
and “hyperbola” as the names of these curves. Unlike
any previous mathematician, Apollonius could work _
with any cone formed by lines through a given point and Apollonius

circle. Thus his cones were double cones, infinitely tall,

which might be oblique (with circular cross-sections

not perpendicular to the axis through their centers). All three of these properties rep-
resented major advances beyond what had been done before. Specifically, since Apollo-
nius was the first to use double cones, he was the first to regard hyperbolas as having
two branches.

Given any segment AB, one can form the family of curves on which the ratio of the
distances to A and to B remains constant. It was Apollonius who first showed that the
curves in this family really are circles, and that each of these “Apollonian circles” will
intersect at right angles with any circle that passes through both A and B.

The eighth book of Conics is entirely lost to time, and only
the first four still exist in the original Greek. The fifth, sixth,

and seventh books were preserved in Arabic translations, -

created and used by mathematicians in the Golden Age of Is- Y

lam. Nothing else that Apollonius wrote has survived, butwe [, A A
know that he wrote many other works, because they’re cited T%}H - Ai&wv ) A{‘f
by other authors. Pappus, who lived about 500 years after A / Yy %
Apollonius, refers to six other works of Apollonius, but only | | -
one (Cutting of a ratio) has come down to the present day. ““ ’A

Another of these works, Tangencies, introduced the “prob-

lem of Apollonius” — the construction of a circle tangent to

three given circles. Almost two thousand years later, Leibniz described how, by repeat-
edly constructing smaller and smaller tangent circles, one could generate a beautiful
fractal which we now call an “Apollonian gasket” (right).
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Jacob Bernoulli Switzerland, 1655-1705

Jacob Bernoulli was the son of influential parents, who
made him study theology. Against their wishes, he
worked on astronomy at the same time, and got a job as
alecturer at his hometown university. At about this time,
he was able to show that the value of an investment
earning compound interest approaches a finite limit as
the number of compounding intervals approaches in-
finity, and in doing so, he was the first to identify the
constant e = 2.71828.. . ., though almost 50 years would
pass before Euler gave it the name e.

At the time, Christiaan Huygens had recently solved
a major research problem. The goal was to find the
“tautochrone” — a curve for which a particle sliding
down the curve, starting from rest, would take the same
amount of time to reach the bottom regardless of its
starting position on the curve. Huygens showed that the cycloid (the path traced out by
a point on a wheel rolling on a horizontal surface) has this property. Bernoulli found
another proof of the same fact by modeling the problem with a differential equation. In
this paper, in 1690, Bernoulli was the first to use the word “integral” in a calculus context.
Five years later, he posed what is now called the Bernoulli equation, v’ = p(x)y + ¢(z)y",
as a challenge to the mathematical community, and received solutions both from Leibniz
and from his own brother Johann (of whom more later).

Jacob Bernoulli

Jacob Bernoulli began the mathematical study of probability in the revolutionary book
Ars Conjectandi (The Art of Conjecturing). Published after his death, it includes his proof
of the “weak law of large numbers,” shows how to count permutations and combinations,
and introduces the modern definition of expected value, the Bernoulli distribution (for
random variables whose only values are 0 and 1), and the binomial distribution (for the
number of 1s occurring in n independent Bernoulli trials). In the process, he showed
how to find sums of powers of consecutive integers, such as 1'% + 219 + ... + 10001, with
the help of a sequence we now call the Bernoulli numbers: {B,} = {1,1,£,0,—=,... }.
In addition to Jacob, the Bernoulli family produced seven more mathematicians in three
generations. The best of these were Jacob’s younger brother Johann and Johann’s son
Daniel. To add to the confusion, Switzerland was (and is) a multilingual country, and
Jacob used the name Jacques among French speakers and James in English, while Jo-
hann went by Jean and John respectively. It was Johann who first proved 'Hopital’s rule,
in a calculus textbook that the Marquis de 'Hopital put own his name on. Jacob was
at first Johann’s math tutor, but the competitive men became bitter adversaries, with
Jacob declaring publicly (and falsely) that Johann only knew how to repeat what he'd
heard from Jacob. It was Daniel who studied the behavior of moving fluids, including the
“Bernoulli principle” that a faster air flow must correspond to a decrease in pressure.
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George Boole England, 1815-1864

George Boole was the son of a shoemaker. The family
was poor, and Boole wasn't able to go to high-quality
schools. He had to teach himself much of what he
learned, including several languages. To bring in money,
he took a teaching job at 16, and opened his own school
when he was 19. As a teacher, he began to study math-
ematics on his own, learning calculus entirely from a
book, and proceeding to study the research of active
mathematicians.

Gradually, Boole mastered the new ideas that developed
into the field of abstract algebra. By showing how these
new tools could be useful in solving differential equa-
tions, he built a reputation as a creative thinker and an
important mathematician, and earned a job as a profes-
sor in Ireland.

George Boole

When he was 37, Boole started explaining calculus to 20-year-old Mary Everest (Mount
Everest is named after her uncle). They married three years later, and she ultimately be-
came a writer (on the topics of math, education, and spiritualism), a university librarian,
and a private math tutor, thus creating a place for herself within the male-dominated
world of 19th-century British academia.

Boole’s most profound idea grew out of his interest in abstract algebra. In his book An
Investigation of the Laws of Thought on Which are Founded the Mathematical Theories
of Logic and Probabilities, he pioneered the concept of using algebraic equations to
represent the methods of logical reasoning. He was the first to imagine variables taking
“true” or “false” as values. These are now called “Boolean variables” in his honor, and
they are a fundamental idea in computer programming. It is hard now to appreciate
how shocking this was! It changed the way we think about logic, and even shaped the
way we construct our sentences when we present a proof. Boole’s colleague Augustus De
Morgan, also an important logician, wrote,

That the symbolic processes of algebra, invented as tools of numerical cal-
culation, should be competent to express every act of thought, and to furnish
the grammar and dictionary of an all-containing system of logic, would not
have been believed until it was proved.

Boole got pneumonia in 1864 after getting caught in the rain, and his wife, who believed
in homeopathic medicine, tried to treat it by wrapping him in wet blankets and pouring
buckets of water over him. Sadly, that didn’t work, and he died at the age of 49.
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Nicolas Bourbaki France, 1935-

In 1934, a young André Weil was teaching calculus in
Paris, and he thought the textbook was outdated. He
and his friend Henri Cartan agreed to recruit a group
of young mathematicians with modern attitudes and
write their own book. Adopting the pen name of Nico-
las Bourbakif|the group started to list the topics they'd
want to cover, and the project began to expand.

Early on, the committee of nine made a critical deci-
sion: their book would be complete and self-contained,
including all of the necessary background material in or-
der. They planned a series of six books, to be published
a chapter at a time: Set Theory, Algebra, Topology, Func-
tions of One Real Variable, Topological Vector Spaces, and Integration. Their ambitions
would only expand: Armand Borel later wrote, “Already in September 1940, Dieudonné
had outlined a grandiose plan in 27 books, encompassing most of mathematics.”

Nicolas Bourbaki

Bourbaki’s work was interrupted by World War II, when the invasion of France dispersed
the group’s members and took their attention away from mathematics. Participants re-
tired from the project and younger members replaced them. From the beginning, every
member had to agree on every decision! Borel described the process:

[A draft] was read aloud line by line by a member, and anyone could at any
time interrupt, comment, ask questions, or criticize. More often than not, this
“discussion” turned into a chaotic shouting match.

Bourbaki’s publications introduced new notation and terminology that is now standard,
such as the symbol @ for the empty set and the terms “injective” and “surjective.” Their
axiomatic philosophy of mathematics was probably even more influential, and their
unifying spirit, bringing out the connections among all areas of math, represents a vision
that dates back to Euclid. Their writing style, strictly following the definition-theorem-
proof format, and their bias towards proving results in the most general context possible,
makes their work tremendously useful as a reference, but a difficult source from which
to learn a new topic.

The group’s membership has always been treated as an open secret, with participants
steadfastly refusing to admit that Nicolas Bourbaki is not the name of an actual human.

Image: MacTutor, https://mathshistory.st-andrews.ac.uk/Biographies/Bourbaki/

*The name is an inside joke. General Charles-Denis Bourbaki had led the Army of the East for the French
Third Republic. In 1871, defeated by the Germans, Bourbaki tried to commit suicide to avoid surrendering,
but his forehead was tougher than his bullet, which flattened against his skull!l Much later, a student giving
a parody lecture borrowed Bourbaki’s name and those of other old French generals for the imaginary
theorems he presented; Weil was in the audience.
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Brahmagupta India, 598-670

Brahmagupta was a mathematician and astronomer,
early in the golden age of mathematics in India. In
628, he revised and expanded the traditional manu-
als from which he'd studied, and published the Brah-
masphutasiddhanta (“Correctly Established Doctrine
of Brahma”). As is typical for the time and place, this
text is entirely written in verse, using no mathematical
notation, and it does not include any proofs. It does in-
clude a lot of new information, including one tremen- e
dously influential innovation: the first description of [

arithmetic involving zero as a number. '

For Brahmagupta, zero was an extension of the natu-

ral number system, obtained by subtracting a number Brahmagupta

from itself. He presented rules for addition, subtraction,

multiplication, and division involving zero in the Brah-

masphutasiddhanta. Of course, this involved him in questions whose answers are not
natural numbers. He handled subtraction from zero in terms of “fortunes” and “debts”
— for example, “A fortune subtracted from zero is a debt.” As for division by zero, he de-
clared the value of n <0 to be £, with 3 = 0. [He didn’t use this modern fraction notation.]

The quadratic formula appears for the first time in the Brahmasphutasiddhanta. Brah-
magupta also solved some integer equations of the form ax*+c = y?, finding, for example,
that 6122 + 1 = y? for x = 226153980 and y = 1766319049, and he knew the formulas for
sums of squares and cubes, 3, k* = MDD gpd S g3 = M.

In geometry, Brahmagupta found that a cyclic quadrilateral with side lengths a, b, ¢, and d
and semiperimeter S = (a+ b+ c+d)/2hasarea /(s — a)(s — b)(s — ¢)(s — d), a formula
which generalizes Heron’s formula for the area of a triangle (which is the d = 0 case). He
also proved a theorem that is now named after him: If ABCD is a cyclic quadrilateral
with perpendicular diagonals intersecting at X, then the line through X perpendicular
to AB passes through the midpoint of C'D.

The Brahmasphutasiddhanta and Brahmagupta’s other work, the Khandakhadyaka (“Ed-
ible Morsel”), were translated into Arabic in Baghdad in the 700s, introducing more peo-
ple to the decimal number system, and popularizing what we now call Arabic numerals.
We can assume that this development was a catalyst for the work of al-Khwarizmi, who
lived in Baghdad, and who wrote The Compendious Book on Calculation by Completion
and Balancing, the first genuine algebra text, around the year 825.
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Georg Cantor Germany, 1845-1918

Born in St. Petersburg, Russia, Georg Cantor moved to
Germany with his family when he was eleven years old.
He went to Ziirich for college, where his father wanted
him to study engineering, but eventually he got permis-
sion to pursue math instead, and transferred to the Uni-
versity of Berlin, where he learned from the important
mathematician Karl Weierstrass, and from Leopold Kro-
necker, who would become his nemesis.

In his early career, Cantor solved a major problem on
trigonometric series, which had defeated several fa-
mous people. To do this, he had to become deeply famil-
iar with the properties of sequences and subsets in the
set of real numbers. In the process, he developed a revo- Georg Cantor
lutionary new point of view on set theory, defining two

sets to have the same size (“cardinality”) when there is

a one-to-one correspondence between their elements.

This sounds reasonable, but has startling consequences: for example, he proved that Z
and Q (the integers and the rational numbers) are the same size, though Z is a subset of
Q. The Cantor set, a fractal subset of the interval [0, 1] which is the same size as [0, 1] but
does not contain any interval, was even more disturbing.

That is, Cantor built an entire spectrum of different infinite numbers, which was shock-
ing. His “diagonal argument” showed that every set has more subsets than elements, and
that R is larger than Z. He conjectured that no set is larger than Z but smaller than R: this
is the continuum hypothesis, and its proof or disproof is still an open problem.

Until this point, the mathematical consensus had rejected the notion of quantities that
were actually infinite. Philosophers as far back as Zeno of Elea, in the fifth century BCE,
had seen the danger of paradox in infinite numbers, and any true paradox threatens
the entire discipline of mathematics. Having built new foundations for the concept of
infinity, Cantor had to overcome the weight of history to encourage others to adopt them.
At the time, his most formidable opponent was his former teacher Kronecker, who took
the extreme position that integers were the only numbers that truly existed. Cantor was
forced to defend his work publicly; he also wrote several times to Pope Leo XIII and other
priests, hoping to help the Church avoid mistaken doctrines regarding the infinite.

Throughout his life, Cantor struggled with depression, which naturally interfered with his
research and his professional relationships. He died in a mental hospital during World
War I — unable to work, poorly fed, and wishing he were at home. But David Hilbert,
who was the world’s most influential mathematician in the early 1900s, chose Biblical
language to express his admiration of Cantor’s work: “No one shall expel us from the
paradise which Cantor has created for us.”
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Augustin-Louis Cauchy France, 1789-1857

Augustin-Louis Cauchy was born in Paris in 1789, the
year when the French Revolution overthrew King Louis
XVI and established the First Republic in France. His
family knew both Lagrange and Laplace; this must have
sparked Cauchy’s interest in mathematics, and it gave
him an exceptional opportunity to learn.

In mathematics, Cauchy’s countryman Joseph Fourier
had just set off a revolution of his own. Fourier’s re-
search into the flow of heat had led him to discontinu-
ous functions that could be represented as infinite sums
of continuous functions. This had never been imag-
ined before, and it required new ideas. For the first time,
mathematicians had to be perfectly specific about what Augustin-Louis Cauchy
they meant by words like “function” and “continuous.”

In this new world, the ideas in Cauchy’s masterpiece,

the Cours d’Analyse, came into prominence. He introduces the idea of limits, as well as
infinitesimals, in terms of variable quantities, then defines a function f to be continuous
if, whenever « is infinitesimal, so is f(z 4+ «) — f(x). (It was Weierstrass, in Germany, who
rewrote this idea twenty years later in terms of real-valued variables, without infinitesi-
mals, which is the version of continuity that we use today.) Using his new limit concept,
Cauchy was able to give the modern definition of the derivative, as a limit of a difference
quotient, and to define the definite integral as a limit of sums.

Cauchy also made huge strides in the world of complex analysis. He used the “Cauchy-
Riemann equations,” which were studied earlier by d’Alembert and Euler, to describe
differentiable functions on complex domains, and applied the “Cauchy integral formula”
to show that every function which is differentiable at and near a point in the complex
plane can be represented as a power series — quite unlike the situation for real functions!

Cauchy’s France was a place of intense political battles, and Cauchy was a strident parti-
san, mainly in support of the Catholic church, which had been taken over by the French
government in the Revolution. He also treated other mathematicians disrespectfully, he
was not a good lecturer, and he had trouble obtaining jobs — partly because he refused
to swear an oath of allegiance to the government of the July Monarchy, which overthrew
the pro-Catholic King Charles X, and partly because of his extremely poor personal rela-
tionships with others in the scientific community. Niels Henrik Abel, another of the great
mathematicians of the 1800’s, summed up the situation by writing,

Cauchy is mad and there is nothing that can be done about him, although,
right now, he is the only one who knows how mathematics should be done.

Image: MacTutor, https://mathshistory.st-andrews.ac.uk/Biographies/Cauchy/

James A. Swenson Math History Nuggets


https://mathshistory.st-andrews.ac.uk/Biographies/Cauchy/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bonaventura Cavalieri Italy, 1598-1647

The mathematician who was born Francesco Cavalieri
in Milan in about 1598 took Bonaventura as his name
in religion when he became a Jesuat [sic] monk at the
age of 17. He was soon transferred to a monastery in
Pisa, where he learned mathematics from a teacher who
had studied with the famous Galileo Galilei. In fact, Cav-
alieri was introduced to Galileo, and most of what we
know about Cavalieri’s life comes from the letters that
he wrote to Galileo over the next two decades. It was
Galileo’s support that eventually won Cavalieri a job as
a professor of mathematics at the University of Bologna,
which he held for the rest of his life.

Bonaventura Cavalieri

While he was trying to win an academic job, Cavalieri
wrote the important book Geometria indivisibilibus
continuorum nova quadam ratione promota (The geom-
etry of continuous indivisibles advanced by a new method). It wasn't easy: the nineteenth-
century French mathematician “Maximilian Marie suggested that if a prize existed for the
most unreadable book, it should be awarded to Cavalieri for Geometria.”f| The method
of indivisibles combined Archimedes’s “method of exhaustion” with Kepler’s work on
infinitesimals in geometry. The basic idea is that any finite region in the plane can be
subdivided into a collection of parallel segments, and that sliding these along length-
wise, independently of one another, doesn’t change the area of the region. This, as well as
the corresponding claim for solids, is now called “Cavalieri’s principle,” and this is what
Cavalieri is best known for today.

It’s hard to realize now, but in the 1600s it was profoundly controversial for Cavalieri to
claim that a region with a finite positive area could be made out of line segments which
have area zero. In 1632, the Jesuit Order, which was an important force in both religion
and education, declared it unacceptable to believe or teach that a line was composed of
points. It took until the late 1600s for Newton and Leibniz to publish the integral calculus
which would ultimately resolve the debate, and Cavalieri’s work was an important step
on the way.

In 1639, Cavalieri published the book Centuria di varii problemi (Hundreds of various
problems). In its full 22-word title, Cavalieri promises “to show the use and ease of loga-
rithms in gnomics, astronomy, geography, altimetry, planimetry, stereometry, and prac-
tical arithmetic.” The subject of “planimetry” refers to measurements in the plane, such
as angles, distances, and areas, and it is here that the approximate integration formula
that we now call “Simpson’s rule” was published for the first time, seventy years before
the birth of Thomas Simpson. He also published two tables of logarithms, which were
influential in promoting the use of logarithms in Italy.
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Arthur Cayley England, 1821-1895

Arthur Cayley’s grandfather was the British Consul Gen-
eral to Russia under Empress Catherine the Great, and
Arthur lived in St. Petersburg until he was seven years
old. Moving to London in 1828, he was a very advanced
student, and was accepted to study at Cambridge.

While at Cambridge, Cayley published three papers. The
very first of these, in 1841, is called “On a theorem in the
geometry of position.” Cayley immediately explains the
formula for the determinant of n x n matrix (though
these words were not yet in use), states that for 3 x 3
matrices det(AB) = (det A)(det B), and that this theo-
rem can be generalized, and uses determinants to give
tests for whether four given points lie on a circle, and
whether five given points lie on a sphere, based only on Arthur Cayley
the straight-line distances among them.

Graduating from Cambridge with a first-class degree in

mathematics made Cayley a “Wrangler,” and in fact he was Senior Wrangler: he finished
with the highest grades in his graduating class. He won a Fellowship, which entitled him
to teach at Cambridge for four years. (To become a tenured professor, he would have
had to take vows as a priest.) He used this time to publish more work on many subjects,
including determinants, and started to work with George Boole by correspondence.

When his Fellowship ended, Cayley took a job as a lawyer, which he hated, and he spent
his free time discussing mathematical research with J. J. Sylvester and others. During that
time, Cayley published very important work on matrix theory, showing for the first time
how to multiply matrices and defining the inverse matrix. In other papers, he defines
the concept of an abstract group for the first time, presenting examples of “Cayley tables”
and bringing together the ideas of matrices, quaternions, and permutations. These were
considered radically different subjects until Cayley’s Theorem, which means that you
can use a clever encoding to think of every abstract group as a group of permutations.

Cayley finally got a job as a professor at Cambridge in 1863. He was finally able to con-
centrate on mathematics full time, and ended up publishing 900 papers. However, his
students didn’t think he was a good teacher. At the time, mathematical education at Cam-
bridge focused heavily on the Tripos, a series of competitive exams that students had to
pass to graduate, and Cayley often lectured on subjects that wouldn’t be on the test. He
valued mathematics for its own sake, saying:

As for everything else, so for a mathematical theory: beauty can be perceived
but not explained.
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Emilie du Chatelet France, 1706-1749

Gabrielle-Emilie Le Tonnelier de Bretuil was born into
an upper-class family: her father was Principal Secre-
tary and Introducer of Ambassadors in the royal court
of King Louis XIV. Tutors taught her languages, classi-
cal literature, philosophy, and mathematics, as well as
riding, dance, and fencing.

At nineteen, she entered an arranged marriage with a
military officer, politician, and nobleman whose title
was the Marquis of Chastellet. It was her marriage, and
the flexibility of spelling in ['Jr'e-revolut.ionary FrAance, Emilie du Chatelet

that changed her name to Emilie, Marquise du Chatelet.

In the end, they agreed to live independent lives, so she

was able to spend her time gambling at cards, conduct-

ingromances, and studying mathematics and philosophy, with Clairaut among her teach-
ers. As awoman, she was excluded from the Paris Académie where science was discussed,
but individuals were willing to work with her. She wrote:

[ feel the full weight of the prejudice which so universally excludes us from the
sciences.... Chance made me acquainted with men of letters who extended
the hand of friendship to me. ...I then began to believe that I was a being
with a mind.

In 1733, soon after the birth of her third child, du Chatelet met the great writer Voltaire,
who was ten years older than she was. They were constant social companions, and before
long, she invited him to live at her country house — he needed to lie low for a bit after
publishing some essays that were too favorable to the British system of government,
and too hostile to the religious establishment. Together, Voltaire and du Chéatelet wrote
a book that introduced Newton’s scientific discoveries to France, and she followed this
with her own Institutions de Physique, in which she brought together Newton’s methods
with Leibniz’s argument that the “vis viva” mv? was an important quantity conserved in
many mechanical systems, rather than the momentum mv emphasized by Newton. This
was an important step toward discovering the concept of kinetic energy.

After this, du Chatelet began her most influential work: the first French edition of New-
ton’s Principia, in which he introduced calculus. This was not just a translation: she
added commentaries that explained the theory and made it accessible. Very few people
then could have understood this material and applied it, as she did, to the astronomy of
the solar system, including Kepler’s laws of planetary motion. Though not published until
after her death, it freed French mathematicians from the outdated theories of Descartes.

Du Chatelet died at the age of 42 from complications of childbirth.
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Alexis Clairaut France, 1713-1765

Alexis Clairaut was born in Paris in 1713. Tragically,
though he was one of twenty siblings, he was the only
one who didn’t die in childhood. His father, a math
teacher, drove him incredibly hard: he learned to read
from Euclid’s Elements and was studying calculus, from
L'Hopital’s textbooks, by the time he was ten years old.
He presented his first original paper at the age of 13.

His name is familiar to calculus students thanks to
Clairaut’s theorem: If the second partial derivatives of =
are continuous near a point, then changing the order
of differentiation doesn’t change the value of the mixed
second partials, and z,,, = z,, at that point. Clairaut pub-
lished this theorem in 1740 in the Memoirs of the Paris Alexis Clairaut
Academy of Sciences, but it was still too early for a proof

that we'd consider valid now. The notion of continuity

wouldn’t be fully developed for another 75 years, and Clairaut probably didn’t realize that
it had to be assumed, or that it might not be true in every example. Moreover, Clairaut
himself wrote, in that 1740 paper,

[ am not the only one who has found this theorem. M. Fontaine had also
found it...and M. Euler, the famous mathematician, has given the Academy
of Petersburg, in the volume which is now in press, a piece full of fine work
on the integral calculus, where he uses this same discovery.

Hermann Schwarz gave the first totally successful proof of Clairaut’s theorem in 1873.

The author Voltaire and his partner, the Marquise Emilie du Chatelet, were good friends
of Clairaut’s, and Clairaut helped with her mathematical training. It was du Chatelet who
first translated Newton’s great Principia Mathematica into French, and she included a
number of Clairaut’s discoveries along the way.

Clairaut was most interested in applying math to physics and astronomy, so much so
that he spent a year on an expedition to Finland with several other scientists, including
Anders Celsius. They set out to measure the length of one degree of longitude, far north
of their home, and verify Newton’s conclusion that the Earth is approximately an oblate
spheroid (wider than a sphere near the equator and narrower toward the poles). Later,
he studied the orbit of the moon. For a while, he thought he had disproved Newton’s
inverse-square law of gravity, but soon realized that errors due to approximation were
keeping the theory’s predictions from matching his observations. He also studied optics,
and he published very successful textbooks on geometry and algebra.
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John Horton Conway England/United States, 1937-2020

When asked what he wanted to be when he grew up,
eleven-year-old John Conway said that he wanted to be
a mathematician at Cambridge. Indeed, he earned his
bachelor’s degree and doctorate at Cambridge, and was
named a fellow there in 1964. He worked on number
theory, logic, and algebra, but also loved games — espe-
cially backgammon.

Conway made a reputation by discovering three new
simple groups: a significant step toward the full classifi-
cation. At almost the same time, he built on an idea of
John von Neumann to create the Game of Life. Its small
set of simple rules, perfect for the new age of personal John Horton Conway
computers, made patterns on a square grid evolve into

surprising complexity.

Throughout his life, Conway studied a diverse array of problems, bringing to all of them
not only deep mathematical insight but also a talent for clear, interesting writing and a
gift for clever names. His interest in games led to his invention of the “surreal numbers,” a
class including not only the real numbers, but also infinitely large numbers and infinitely
small ones: in fact, all of the numbers that could possibly belong to an ordered field.
Astonishingly, each surreal number is defined to be a position in some two-player game!

Conway enjoyed studying recreational math, not restricting himself to “serious” prob-
lems. He fully analyzed “audioactive” puzzle sequences like (2,12, 1112,3112, 132112, .. .),
where the challenge is to predict the next term. After a few preliminaries, Conway proves
his “cosmological theorem:” The terms in such a sequence eventually split into non-
interacting subsequences (“atoms”), for which there are exactly 92 possibilities, and Con-
way names these for the 92 chemical elements from hydrogen to uranium. The number
of digits in the terms grows exponentially: In the limit, each term is \ times as long as the
term before, where A ~ 1.303577. .. is “Conway’s constant.”

Conway’s coauthor Richard Guy drew this memorable portrait:

Conway is incredibly untidy. The tables in his room. .. are heaped high with
papers, books, unanswered letters, notes, models, charts, tables, diagrams,
dead cups of coffee and an amazing assortment of bric-a-brac, which has
overflowed most of the floor and all of the chairs, so that it is hard to take
more than a pace or two into the room and impossible to sit down.... In
spite of his excellent memory he often fails to find the piece of paper with the
important result that he discovered some days before, and which is recorded
nowhere elsef|
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Richard Dedekind Germany, 1831-1916

Julius Wilhelm Richard Dedekind, son of a law professor,
grew up in Brunswick, Germany, and got a good educa-
tion, choosing to focus on math because of its logical
structure. At the University of Gottingen, he had Gauss
for a professor and Riemann for a classmate. Though
he earned his doctorate and completed the habilitation
degree that made it possible for him to get a job as a
professor in Germany, he did not feel confident in his
preparation level, and continued to take courses even
after being hired to teach at Géttingen.

Dedekind was soon joined by Lejeune Dirichlet, who
was hired when Gauss died. A generation older than
Dedekind, he helped fill the gaps in the younger profes- Richard Dedekind

sor’s knowledge. With a letter of recommendation from

Dirichlet as a good teacher, Dedekind got a job in Ziirich.

There he was assigned to teach calculus for the first time in 1858, and while planning his
lectures, he saw a new way to define what a real number is. Assuming that the rational
numbers are understood, Dedekind declared that a real number can be represented as a
non-empty proper subset z of the rationals with no greatest element, with the property
that every rational number less than any element of z is also an element of «.

Such a subset is now called a Dedekind cut; this construction is one of the first successful
efforts to say clearly what a real number is. The motivation came from the crisis in calcu-
lus, which had created a demand for rigorous definitions of continuity and derivatives,
given in terms of arithmetic rather than geometry. Dedekind did not publish his work on
cuts until 1872, but people were strongly interested in the question: Hamilton, Cantor,
and others all published their own constructions of the reals at almost the same time.

Dedekind took up the important task of collecting and publishing the complete works of
Dirichlet, Gauss, and Riemann after they died. In doing so, he studied Dirichlet’s research
on algebraic number theory, which stimulated him to write his own book on the subject.
While carrying out this line of study, he defined the concepts of “fields” and “ideals” —
both essential definitions in abstract algebra.

Pursuing the theme of justifying the existence of various types of numbers, Dedekind
published What are numbers and what are they for? in 1888, where he showed how to
start from the natural numbers to construct first the integers, and then the rational num-
bers. In every case, he considers these sets as concrete objects actually containing an
infinite number of elements, which was a controversial idea! In addition, he gives his own
justification for the reasoning involved in a proof by mathematical induction. Dedekind
was also a role model for his writing style itself, described by Hermann Minkowski as “a
minimum amount of blind calculation, a maximum of clear-seeing thought.”
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Augustus De Morgan England, 1806-1871

Augustus De Morgan was born in India to a British sol-
dier and his wife. As an infant, an infection cost him the
sight in his right eye, and his classmates later bullied
him due to his disability. He went to Cambridge, where
besides mathematics, he considered careers in religion,
medicine, and law. He was also an excellent flute player.

He was studying for the bar exam when the brand
new London University appointed him to their chair of
mathematics. Right away, he translated a French alge-
bra textbook for his students — actually, only the first
few chapters, because, he explained, “every one who is
desirous of attaining a considerable degree of mathe-
matical knowledge must become acquainted with the Augustus De Morgan
French language.”

After working at London University for eight years, De

Morgan resigned in a protest for academic freedom. The school rehired him five years
later, and he remained there for thirty more years, but finally resigned again when his
college decided against hiring a candidate based on their religious beliefs.

De Morgan is best known for his work on logic. He was the first to state De Morgan’s laws
in Boolean algebra — that the negation of “A and B” is “not A or not B,” and vice versa.
He coined the term “mathematical induction” in 1838, becoming the first to formalize
that proof technique in a systematic way. He gave individual lessons in math and logic
to Ada Lovelace, who is regarded as the first computer programmer (a century before
electronic computers were invented). He wrote hundreds of encyclopedia-style articles
introducing math and other topics to the general public, and he published textbooks on
arithmetic, trigonometry, calculus, and the complex numbers.

In an 1852 letter to his friend William Rowan Hamilton, De Morgan proposed a new
claim that quickly became famous, and attracted many false proofs across the decades:

A student of mine [Frederick Guthrie, inspired by his brother Francis]
asked me to day to give him a reason for a fact which I did not know was
a fact — and do not yet. He says that if a figure be any how divided and the
compartments differently coloured so that figures with any portion of com-
mon boundary line are differently coloured — four colours may be wanted,
but not more.... Query cannot a necessity for five or more be invented....

The celebrated “four color problem” was only solved in 1976, by Kenneth Appel and
Wolfgang Haken of the University of Illinois, with the help of a computer.
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René Descartes France/Holland, 1596-1650

The philosopher René Descartes was a critical figure
in the era now known as the Scientific Revolution. Re-
jecting the traditional reverence for the wisdom of an-
cient authorities (especially Aristotle), he set out to de-
velop his own canon of reliable knowledge, starting
from scratch. In his Discourse on the Method}, he writes,

The first [logical principle] was never to ac-
cept anything for true which I did not clearly
know...and to comprise nothing more in my
judgment than what was presented to my
mind so clearly and distinctly as to exclude
all ground of doubt.

René Descartes

When anyone attempts to organize all of their knowl-
edge systematically, the key question is where to begin.
How can the very first claim be justified, with no prior
knowledge to reason from? After acknowledging that
any or all of his beliefs might be mistaken, Descartes decided that he could be absolutely
certain of at least one thing: he must exist, since otherwise he couldn’t be thinking at all.

I observed that this truth, ‘I think, therefore I am,” was so certain and of such
evidence that no ground of doubt, however extravagant, could be alleged by
the sceptics....

That’s probably the most famous quotation in all of philosophy, but his work in mathe-
matics turned out to be more important! He argued that it was natural to study math first,
since “of all those who have hitherto sought truth in the sciences, the mathematicians
alone have been able to find any demonstrations, that is, any certain and evident rea-
sons....” For the first time, Descartes introduces the idea of naming points in the plane
using pairs of real numbers (though the details would have to wait for later authors). This
coordinate system, called “Cartesian” in his honor (since his name was printed in Latin
texts as Renatus Cartesius), formed a link, for the first time, between algebra and geome-
try! Take a moment to think about this: the classical Greeks understood both parabolas
and square numbers in depth, but connecting those concepts by graphing the equation

= x? was impossible until Descartes published La Géométrie two thousand years later.

As you might expect, the new tools that Descartes provided led directly to a new era of
discovery in mathematics and science. From the publication of La Géométrie in 1637, it

is just under thirty years to Newton'’s invention of calculus in 1666.
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Paul Dirac England, 1902-1984

Paul Dirac grew up in England, and was about to turn 12
at the outbreak of World War I. Thus he was too young
for military service, but many of the older boys were
gone, which left some extra educational opportunities
open at his school. He studied electrical engineering
at his hometown university; he had been admitted to
Cambridge, but couldn’t afford the tuition.

However, once he graduated, he did go on to study at
Cambridge, and there he found his calling: creating the
mathematical foundations for quantum theory. The key
idea for Dirac’s thesis came while he was studying a rev-
olutionary paper by Werner Heisenberg. In quantum
theory, observable phenomena are represented by func- Paul Dirac
tions, and Dirac saw that Heisenberg’s uncertainty prin-

ciple could be expressed by saying that the position and

momentum functions did not commute.

In 1927, shortly after he earned his Ph.D., Dirac published a paper called “The Physical
Interpretation of the Quantum Dynamics,” in which he described a quantum operator as
a kind of matrix with uncountably many rows and columns. To work with such a matrix,
he said, he had to invent the Dirac delta function:

One cannot go far. .. without needing a notation for that function of a [real]
number z that is equal to zero except when z is very small, and whose integral
through a range that contains the point z = 0 is equal to unity. We shall use the
symbol é(x) to denote this function.... Strictly, of course, §(z) is not a proper
function of z.... All the same one can use §(x) as though it were a proper func-
tion for practically all the purposes of quantum mechanics without getting
incorrect results.

Dirac’s work was highly honored from the very beginning. At the age of 30, only six years
after earning his Ph.D., he became Lucasian professor of mathematics at Cambridge, a
chair which was previously held by Newton, and would later belong to Stephen Hawking.
The following year, Dirac shared the Nobel Prize for Physics with Erwin Schrodinger.

Dirac was not talkative, maybe because his Swiss father had only allowed the family to
speak to him in French. The other professors at Cambridge “honored” Dirac by naming
a new unit after him: one dirac is equal to one word per hour. Dirac was anti-religious, ar-
guing that religion was promoted mainly to control dissatisfaction among the exploited
poor. The physicist Enrico Fermi teased him about this: “Well, our friend Dirac has got a
religion and its guiding principle is ‘There is no God, and Paul Dirac is His prophet.””
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Johann Peter Gustav Lejeune Dirichlet Germany, 1805-1859

Lejeune [“Junior”] Dirichlet grew up in Diiren, which is
now in Germany but was then under the control of the
new Emperor of France, Napoleon Bonaparte. He was
an enthusiastic math student, taking classes from Ohm
in Cologne before moving on Paris, where he worked
with famous mathematicians like Laplace, Legendre,
and Fourier. He eventually became a professor in Berlin,
and married his wife Rebecca, whose brother was Fe-
lix Mendelssohn. His reputation grew to the point that
when the great Gauss died, Dirichlet replaced him at the
University of Gottingen.

As part of Dirichlet’s work in number theory, he took an
interest in the challenge of approximating an irrational
number « by rational numbers with small denomina-
tors. By looking at the decimal forms of multiples of «,
he found a clever way to prove that for any , there is always a rational number £, with

g < N, for which £ is within qLN units of a. Since then, his technique has been applied to
an extremely broad range of problems, and is sometimes known as the Dirichlet princi-
ple, but we more often use the name that he himself gave it — the pigeonhole principle.

Lejeune Dirichlet

In fact, it was Dirichlet who, in 1837, first defined functions in the way that we now
understand them: a rule assigning a unique output to every input. This was not clear to
anyone at the time! Actually, it was controversial for decades: mathematicians were used
to just thinking of functions as curves, or as formulas, which was a problem: from that
viewpoint, it was hard to be specific about the meaning of some properties of functions,
like continuity. Dirichlet was led to his definition through his work on the convergence
of sums of functions: he solidified the theory of Fourier series by finding the right way to
fill the logical gaps in prior work of Fourier, Poisson, and Cauchy.

Also in 1837, Dirichlet announced his most famous achievement, now known simply
as Dirichlet’s theorem: Unless a and b share a prime factor, the sequence of integers
a,a + b,a + 2b, ... always contains infinitely many prime numbers. This was a major
accomplishment! Legendre had conjectured this at least 35 years earlier, and Gauss knew
about the question, but to find his proof, Dirichlet basically had to invent a new field of
mathematics, now called analytic number theory.

The 1850 journal of a younger mathematician, Thomas Hirst, describes Dirichlet:

He was unwashed, with his cup of coffee and cigar. One of his failings is
forgetting time, he pulls his watch out, finds it past three, and runs out without
even finishing the sentence.
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Paul Erdos Hungary, 1913-1996

Paul Erdés (AIR-dish) was born in Hungary, to parents
who were both math teachers. He started college at 17,
despite the oppressive rules of Hungary’s pro-Nazi gov-
ernment: Erdés came from a Jewish family. Four years
later, he had earned a Ph.D., but still had to leave Hun-
gary to find work. As World War II approached, he made
his way to the U.S. However, he was blocked from re-
turning during the Red Scare of the 1950s, when he re-
fused to say that he would never go back to Hungary.

Ultimately, Erd6s became a nomad. He traveled, often
unannounced, from one mathematician’s home to an-
other, declaring, “My brain is open,” and collaborating
on research for a few days at a time, relying on his hosts
for meals, laundry, and transportation. No one has ever
worked productively on math with so many other peo-
ple: he published over 1500 papers, with 511 different
co-authors. These distinguished mathematicians are said to have Erd6s number 1, their
other co-authors have Erd6s number 2, and so on.

Paul Erdds

While still a university student, Erdés found an elegant new proof of a well-known theo-
rem on the distribution of prime numbers: “Chebyshev said it, and I say again — There
is always a prime between n and 2n.” In 1949, with Atle Selberg, he found the first el-
ementary proof of the prime number theorem: the number of primes between 1 and
n is approximately n/Inn. Throughout his life, he strove to find beautiful solutions to
beautiful problems. It was Erdds who first imagined “The Book,” in which God keeps the
most elegant proof of every mathematical theorem (and, according to Erdds, sometimes
deliberately conceals them).

He also posed significant problems that shaped the direction of research in combina-

torics and number theory, frequently offering (and paying) cash bounties for solutions.
Though he rarely held a regular job, Erdés was confident:

What would the world’s strongest bank do if all its depositors came in on
the same day and demanded their money? Of course the bank would go broke.
But that is much more likely than that all of my problems will be solved[]

Despite his death, hundreds of these prizes are still active.

Erdés died in 1996, at a conference in Poland, and was buried in Hungary. He proposed
that his gravestone should read, “I've finally stopped getting dumber.”
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Euclid Greece/Egypt, c. 325-265 BCE

Euclid of Alexandria belongs to the classical era of Greek
culture, but he lived and taught in the great city of
Alexandria, in Egypt. Since he lived over two thousand
years ago, it isn’t surprising that we don’t know much
about him for sure. In fact, don't take the picture at right
too seriously: We can’t even be completely sure that Eu-
clid was an actual person! Though it seems most likely
that Euclid was a mathematician in Alexandria around
300 BCE, we might instead imagine a group working to-
gether on a massive project in the field of geometry, and
borrowing a name from the earlier philosopher Euclid
of Megara (a student of Socrates). Certainly, these two
Euclids have often been confused with each other over
the years.

Euclid is known for writing the Elements, the single text-
book on which European math education was based
from the time it was written until well into the twenti- Euclid

eth century. In the Elements, Euclid arranged all of the

mathematics that was known in his time and place into

a single coherent account, and showed how to derive all of it from a short list of assump-
tions. Euclid wasn’t the first to discover the mathematics that he wrote about, but his
work became the model of how math is done, proceeding from axioms and definitions
to propositions and theorems via rigorous proof. Though later mathematicians found
some places where Euclid’s proofs used unstated assumptions, his work stood up aston-
ishingly well to close scrutiny. For two thousand years mathematicians and philosophers
treated the Elements as a accurate description of the physical nature of the universe —
or even more: a logical exposition of what the universe had to be like, and why.

The proofs in the Elements are based on five postulates — the initial assumptions that
must be made in any system of deductive reasoning. [You can never prove everything,
because when you try to prove the first fact, you don’t know any facts to start from!] Of
the five, one (the “parallel postulate”) has always been considered less obvious than the
others, and ever since Proclus (400s CE), there have been attempts to prove it using the
other four. But in the 1800s, mathematicians like Gauss, Poincaré, Lobachevsky, Bolyai,
and Riemann showed that it’s reasonable, and useful, to interpret geometry in such a way
that the parallel postulate is actually false! This “non-Euclidean geometry” led directly to
arevolution in the way people thought about truth and reason. Rather than thinking of
postulates as self-evident true statements about reality, we now regard them as hypothe-
ses, which may be applicable in some contexts but not in others, and which set limits on
the meaning of the language that we use in our reasoning. Euclid’s dream of arranging
all mathematical truth in a single unified presentation now seems to be doomed, but his
vision continues to shape our search for knowledge.
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Leonhard Euler Switzerland, 1707-1783

At the age of 14, Leonhard Euler became a student of the
famous mathematician Johann Bernoulli at his home-
town school, the University of Basel. He earned his mas-
ter’s degree there, officially in philosophy. His father
wanted him to do a doctorate in theology, but he got per-
mission to switch to mathematics, earned his degree,
and in 1727 he got a job teaching in Saint Petersburg,
Russia, at a new scientific institute founded by Cather-
ine the Great. He moved to Berlin in 1741 to work for
King Frederick the Great, who was then founding the
Berlin Academy of Science, then returned to Saint Pe-
tersburg in 1766. Soon after this, he became ill, and lost
his eyesight; he had lost all vision in his left eye by about Leonhard Euler

1740, and was completely blind by 1771. Still, he contin-

ued his mathematical research until the day he died, 12

years later, and remained so productive that his work continued to be published until
1830, when he had been dead for 47 years.

Indeed, Euler was the most productive mathematician of all time, publishing 785 cat-
alogued papers, and one of the most influential. Much of the mathematical notation

that we take for granted was invented by Euler: examples include e, i, sin z, Z, and f(x).
k=1

He worked in all areas of mathematics; it is likely that he was among the last humans

to know all (or essentially all) of the mathematics that was known at any given time.

(Gauss is probably the only later mathematician who might plausibly have claimed this

achievement.)

Euler proved, or defined, Euler’s formula for complex exponents: e** = cosx + i sin z. He
invented the field of graph theory, and proved another theorem that is now named after

him: If a polyhedron has V' vertices, E edges, and I faces, then V — E + I’ = 2. He solved
2

=1
what we now call the Basel problem by showing that Z 5= %, and went beyond the
n=1

1
knowledge that there are infinitely many prime numbers to prove that Z - = oo, the

sum running over all positive primes p. Besides ¢ = 2.7182818.. .., which is named in his
honor, there is another real number called Euler’s constant:

. ~ 1
v =0.57721566 - - - = nhjEO [(Z E) — lnn] .

k=1

There’s no doubt that Euler would belong on the “Mount Rushmore of mathematics,” as
one of the four greatest mathematicians of all time. Who else would you choose?
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Pierre de Fermat France, 1601-1665

Pierre de Fermat earned his living as a lawyer, but had
a passion for mathematics. He shared this interest with
a coworker, who took news of the things Fermat had
done to the mathematicians in Paris. From then on, Fer-
mat corresponded regularly with other French mathe-
maticians, including Marin Mersenne, generally to chal-
lenge them to solve problems he'd already worked out.
When Mersenne couldn’t solve most of these problems,
he asked Fermat how to do them. Fermat responded
with two essays — one on the topics that would soon
belong to differential calculus, and another on apply-
ing algebra to problems in geometry. The first of these
essays contains the original statement of "Fermat’s the-
orem” that the local maxima and minima of a function
could only occur at critical points. Pierre de Fermat

Regrettably, Fermat fell into a feud with René Descartes

after expressing a negative opinion of one of Descartes’s essays on the refraction of light.
After other mathematicians got involved, Descartes acknowledged the quality of Fermat’s
work (while criticizing his exposition of it), but he continued to denigrate Fermat'’s ability
privately, in a way that seriously damaged Fermat’s reputation. Years later, reviewing
the controversy, Fermat proposed that light travelling from one point to another always
follows the shortest possible path between them, used this hypothesis to re-prove Snell’s
law on refraction, and suggested treating it as a fundamental axiom of optics.

Later in his life, in a short exchange of letters, Fermat reviewed the work of a younger
French mathematician, Blaise Pascal, and together they established the basic framework
for a mathematical theory of probability.

Five years after Fermat’s death, his son published an edition of Arithmetica by Diophan-
tus annotated with the comments that Fermat had written in his own copy of the book.
One of these taunted the mathematicians of the world for centuries: Fermat wrote,

To divide a cube into two cubes, a fourth power into two fourth powers, or
in general any power above the second into two powers of the same name
is impossible, and I have certainly found a remarkable proof of this. But that
won't fit in this small margin.

The fact that no one could find such a proof of “Fermat’s last theorem,” until Andrew
Wiles did it in 1994 by methods that could not have been imagined even in 1900, suggests
that Fermat was mistaken. However, the search for his lost proof was one of the driving
forces that inspired mathematical progress for over three hundred years.
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Leonardo Pisano (Fibonacci) Italy, 1170-1250

Leonard of Pisa grew up in what is now Algeria. His fa-
ther had moved there for professional reasons: he rep-
resented traders from the cathedral city of Pisa (where
a new bell tower was under construction, and the soil
was just beginning to sink under the foundations).

At the time, science was barely progressing in Europe:
“About the only mathematics that was carried out was
that necessary for the computation of the date of
Easter.’f|However, the Islamic world, including Algeria,
was in a golden age. Through his immersion in this
scholarly culture, Fibonacci learned state-of-the-art
mathematical methods, especially the place-value sys- . ) )
tem based on the Arabic numerals 0, 1,2, 3,4,5,6,7,8,9. Leonardo Pisano (Fibonacci)

When he got back to Italy, Fibonacci published his Liber

Abaci (“Book of the abacus,”) which changed the world

by bringing the Arabic numerals to European scientists: a dramatic increase in efficiency
compared to the Roman numerals they had been using. The text includes many practice
problems, including the one for which Fibonacci is best remembered:

A certain man put a pair of rabbits in a place surrounded on all sides by a
wall. How many pairs of rabbits can be produced from that pair in a year if
it is supposed that every month each pair begets a new pair which from the
second month on becomes productive?

If no rabbits ever die, then the number of pairs after » monthsis a,, = a,,_1 +a,_» (though
Fibonacci did not use this notation, since variables and the equals sign would not be
invented for centuries): the total number of pairs from the previous month, plus one
new pair for each pair that’s at least two months old. The problem suggests ¢, = 1 and
a; = 1, from which the sequence of “Fibonacci numbers” 1,2,3,5,8,13, 21, ... follows.

In 1225, Fibonacci wrote Liber quadratorum (“Book of squares”), more advanced than
Liber Abaci though less influential, in which he proved several theorems in number the-
ory relating to the square numbers 1,4,9, 16,25, . ... For example, he showed that any
square is the sum of the first several odd numbers 1 + 3 +5+ --- + (2n — 1) = n?, found

the sum of the squares of consecutive numbers 1% + 22 + 32 - .. 4 p2 = 2D 54

of the squares of consecutive odd numbers 12 + 3% + 52 + --- + (2n — 1)? = w,

and proved that z* — y* cannot be a square.
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Joseph Fourier France, 1768-1830

The twelfth of fifteen siblings, Joseph Fourier was or-
phaned at the age of ten. He considered the priesthood,
but opted for a secular life in mathematics. Politically,
he became a partisan of the French Revolution, though
he tried to withdraw from his involvement when the
Reign of Terror got underway. After taking sides in a
post-revolution political struggle, he was arrested, and
would likely have been guillotined if Robespierre hadn’t
beaten him to it.

Fourier took classes from Lagrange and Laplace (he
liked Lagrange better), and within a few years, he took
over Lagrange’s chair at the Ecole Polytechnique in Paris.
He soon left, though, when he was appointed scientific Joseph Fourier
advisor to Napoleon’s invasion of Egypt. The French

army was successful, but their navy was not, and Fourier

was stranded in Egypt until the French surrender in

1801. While there, he helped to found the Cairo Institute, a scientific society.

When he got back to France, Fourier wanted to return to his university, but Napoleon
appointed him Prefect of the Department of Isere, the local official in charge of state
services. This took him to the city of Grenoble, where he did his most important research.
Between 1804 and 1807, while working for the government, he wrote a paper called On
the Propagation of Heat in Solid Bodies, in which he introduced “Fourier’s law of heat
conduction,” and used it to deduce the “heat equation”:
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This differential equation models how heat diffuses through a solid over time.

This was also the paper in which he introduced Fourier series. He concluded that every
function can be written as an infinite sum of sines and cosines. [It turns out that this ac-
tually isn’t true for every function, but the necessary conditions would not be understood
for a long time.] This was so unexpected that it became controversial: his former teach-
ers Laplace and Lagrange concluded that it was simply wrong. In particular, Fourier was
interested in discontinuous functions, and no one expected that a sum of continuous
functions could be discontinuous.

The resulting debates had a profound impact on the development of real analysis, as
everyone worked to salvage what they could of their earlier intuitions, clarifying the right
definitions for ideas like convergence and continuity. Beyond that, Fourier series also
became an incredibly powerful tool in an immense range of practical applications, from
audio noise reduction to MRI imaging to data compression (including MP3 audio, JPEG
images, and cellular network transmissions).
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Johann Carl Friedrich Gauss Germany, 1777-1855

When you were eight years old, how long would it have
taken you to add up all of the whole numbers from
1 through 100? The young Carl Friedrich Gauss aston-
ished his teacher by finding the sum instantly:

144100 = (14100) + (24 99) + - -- + (50 + 51)
=50 - 101 = 5050.

His father would have been less surprised: 3-year-old
Carl had spotted an error in his dad’s calculations!

Gauss was able to focus on math starting when he
was 14, thanks to financial support from the local duke.
Before he was 18, he developed the principle of least
squares optimization, and he correctly predicted how
common prime numbers of any given size are (though
the “prime number theorem” would not be proved until
40 years after Gauss’s death). At the University of Gottingen, he made two tremendous
advances that established him as already a first-class mathematician. First, he listed all n
for which the regular n-gon can be constructed with a compass and straightedge (his list
was proved to be complete by Wantzel later) and showed how to construct the regular
17-gon, and he gave the most complete proof of the fundamental theorem of algebra that
was then known (Argand came up with the first fully rigorous proof within a decade).

Johann Carl Friedrich Gauss

In 1801, a monk in Sicily saw something that looked like a comet, but “might be some-
thing better,” and named it Ceres. [It’s either the first asteroid or the first dwarf planet
ever found.] He published his observations, but by the time they came out, Ceres had
gone behind the sun, and astronomers needed a prediction of its location to find it once
it came back out. Gauss was the only one who could tell them where to find it. Several
years later, he won a prestigious job as director of the observatory in Gottingen. As an
astronomer, he had to deal with measurement errors, and to do so he used the normal
(or “Gaussian”) distribution as a model. While working out the gravitational force exerted
by a ellipsoid, he uncovered some special cases of a property of surface integrals; the full
divergence theorem (“Gauss’s theorem”) was proved later by Ostrogradsky.

Gauss was an unhappy man. He had poor relationships with his father and with his sons.
His patron died in battle, fighting Napoleon, and his wife died after having three children
in three years. He never collaborated with other mathematicians, partly because he was
a German nationalist while the greatest mathematicians of the time were in France, and
partly because he simply didn’t want to give any clues to others who might manage
to prove things before he did. When people wrote to him about mathematics, he was
politely hostile, usually telling them that he already knew everything they had proved,
but hadn’t bothered to publish it. His behavior made him less influential than he should
have been, but he still ranks among the most important mathematicians of all time.
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Sophie Germain France, 1776-1831

Sophie Germain was born in Paris, the second of three
girls. Her parents educated her at home, but this was
interrupted when she was thirteen by the French Rev-
olution — her father held political office. Through her
teen years, Germain had to educate herself, because her
parents forbade her to learn math: they thought it was
inappropriate for girls. She studied when she was sup-
posed to be sleeping, against the will of her parents, who
tried to prevent her by taking away the lights from her
bedroom, then the heat, and finally even her clothes, so
she couldn’t sneak out and do math. When they found
her asleep at her desk, wrapped in blankets, in a library
so cold that her ink was frozen, they realized that they
had lost the battle.

Sophie Germain

When the Ecole Polytechnique, now a highly prestigious

university, opened in Paris in 1794, Germain was eigh-

teen years old. They didn't admit women, but some of the students shared their lecture
notes, and so Germain took analysis from Lagrange without his knowing it. In fact, she
submitted a paper at the end of the term, borrowing the name of a student (M. LeBlanc)
who had dropped out. The paper was original enough that Lagrange sought her out, and
became an advisor to her (though she was still not admitted to the school).

Germain also exchanged letters with Gauss, again using her pseudonym. In 1806, with
France and Germany at war, the French had invaded Gauss’s town, and she tried to pro-
tect Gauss by reaching out to a French general who was a family friend. An officer was
sent to find Gauss, who was indeed safe, but didn’t recognize the name of the woman
who had intervened on his behalf. The truth came out, and Gauss (who was not generous
with praise) described her as

...a brilliant example of what I would find difficult to believe.... [W]hen a
woman, because of her sex, our customs and prejudices, encounters infinitely
more obstacles than men...yet overcomes these fetters and penetrates that
which is most hidden, she doubtless has the noblest courage, extraordinary
talent, and superior genius.

Germain won a prize from the Paris Academy of Sciences, who had issued a challenge
to develop a theory explaining how surfaces vibrate, by deriving a fourth-order partial
differential equation. But she spent most of her life trying to prove “Fermat’s last theorem”
—if n > 2 is an integer, then there are no solutions in positive integers to the equation
" +y" = 2", and succeeded when 3 < n < 196 and when z and y aren’t very large. It is
fascinating to imagine what she might have achieved if she'd had any support at all.
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Kurt Godel Austria-Hungary/United States, 1906-1978

Kurt Godel was an excellent student. His brother wrote,
“At the time it was rumored that in the whole of his time
at High School not only was his work in Latin always
given the top marks but that he had made not a sin-
gle grammatical error.” While still in high school, he
was studying math at the university level. He earned
a Ph.D. from the University of Vienna, studying formal
logic and the philosophy of mathematics, and was hired
to teach there.

At the time, the world of mathematics was reacting to
a crisis: the unexpected and shockingly unintuitive dis-
coveries of the 1800s, such as non-euclidean geometry, Kurt Godel

and the existence of pathological examples in analysis

and topology, had sparked an urgent need for unam-

biguous language and rigorously logical reasoning. Hilbert was modernizing Euclid’s
axiomatic development of geometry, while Dedekind and others rethought the defini-
tions of numbers themselves. The grandest project was a redesign of the foundations of
mathematics itself, building upon a carefully designed collection of axioms for set theory
(the “Zermelo-Fraenkel axioms, with the axiom of choice”). Towards this goal, Bertrand
Russell and Alfred North Whitehead had published (between 1910 and 1913) the massive
Principia Mathematica, intended to establish a trustworthy starting point from which
all mathematics could proceed.

After earning his doctorate, Godel established limits on the aspirations of all of these
projects at once by publishing “On formally undecidable propositions of Principia Math-
ematica and related systems,” in which he proved his famous Incompleteness Theorems.
The first of these states that any axiomatic system rich enough to fully explain integer
arithmetic will always contain statements about that subject that are true but cannot
be proved; the second is that no axiomatic system can be proved to be free from contra-
dictions by valid reasoning within that system. There was, in other words, no longer any
hope of organizing mathematics into a single consistent and complete presentation.

Throughout his life, G6del was constantly concerned about his health. At the age of six,
he had suffered through a case of rheumatic fever. He recovered well but, reading medical
books while still a child, he learned that rheumatic fever could damage the heart, and
he became convinced that this had happened to him. He was also seriously disturbed
when one of his former professors was killed by a Nazi student. For both of these reasons,
when World War II began, Godel was unwilling to be drafted into the German army,
and emigrated to the United States. Moving to Princeton, he became friends with Albert
Einstein, and published some work on relativistic physics, as well as more results about
axiomatic systems. Eventually, his medical anxiety developed into a conviction that he
was being poisoned, and in his efforts to avoid this, he died of malnutrition in 1978.

Image: MacTutor, https://mathshistory.st-andrews.ac.uk/Biographies/Godel

James A. Swenson Math History Nuggets


https://mathshistory.st-andrews.ac.uk/Biographies/Godel
http://creativecommons.org/licenses/by-nc-nd/4.0/

Edouard Goursat France, 1858-1936

Edouard Goursat lived the ordinary life of a mod-

ern professional mathematician, earning his Ph.D. in },ﬁ—r*
1881 from the prestigious Ecole Normale Supérieure in
Paris, then working as a professor at the University of ' . \

Toulouse, the ENS, and the University of Paris. (His doc-
toral advisor, Gaston Darboux, is known for defining the
upper and lower Riemann sums, and using them to de-
fine what it means for a real function to be integrable.)

Soon after defending his thesis, Goursat published his
“Proof of Cauchy’s theorem,” showing that if a complex
function f(z) is differentiable on, inside, and near a sim-
ple closed curve C, then [, f(z) dz = 0. Cauchy’s origi-
nal proof was based on the additional assumption that
f'(z) was continuous, but Goursat’s proof didn’t use that
assumption. This was important: he could now show
that such a function f automatically has a continuous derivative, and is in fact infinitely
differentiable! Thus Cauchy’s integral theorem, with the extra hypothesis removed, is
now often called the Cauchy-Goursat theorem.

Edouard Goursat

Like many other mathematicians of the time, Goursat was interested in the geometry of
spaces in four or more dimensions. He was the first to classify all the ways that reflections
of four-dimensional space could generate a finite group of linear transformations, and
he studied the various smooth surfaces in three dimensions that have the same planes of
symmetry as the Platonic solids. At this time, he also proved what we now call “Goursat’s
lemma,” (or, amusingly, “Goursat’s other theorem”) which classifies the subgroups of a
direct product A x B of groups A and B.

Goursat studied what are now called differential forms. A differential form is basically
the type of expression that comes after an integral sign: a function times an expression
involving differentials. In this language, Goursat observed that he could write Green'’s
theorem, Stokes’s theorem, and the divergence theorem in multivariable calculus in the

unified form w = [ dw. (The theorems had already been combined into a single

as S
“generalized Stokes’s theorem” by the Italian mathematician Vito Volterra.)

After the turn of the century, Goursat focused on writing a new textbook, Cours d’analyse
mathématique, covering calculus and differential equations. In this book, which was well

received, he named “I'Hopital’s rule” after the Marquis de 'Hopital for the first time. The
text was translated into English and used in many American universities.

Goursat was well respected in his lifetime, winning many prizes for his mathematical
work, and even received the Legion of Honor, the highest decoration awarded in France.
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Evelyn Boyd Granville United States, 1924

Born in Washington D.C. in 1924, Evelyn Granville (née
Boyd) experienced the Great Depression as a young
child. She was encouraged in her education by her aunt,
and came to regard school as a critical source of oppor-
tunity — especially, she wrote, because she was Black:

We accepted education as the means to
rise above the limitations that a prejudiced
society endeavored to place upon us.

Granville graduated with honors from Smith College,
where she focused on math and astronomy and worked
for the National Bureau of Standards during the sum-
mers. She earned her Ph.D. at Yale in 1949, working Evelyn Boyd Granville

on functional analysis — one of the first three African-

American women to earn a doctorate in mathematics.

She took a temporary position at New York University,

where she studied differential equations, then became

a professor at Fisk University in Tennessee. While there,

she and three colleagues attended the annual meeting of the Southeastern Section of
the Mathematical Association of America, but because they were Black, they were barred
from the official banquet and the speech given there by the MAA’s national president.
This shameful act of discrimination, once publicized, forced the MAA to formulate its
first anti-discrimination policy.

In Tennessee, Granville was confronted with enough obstacles, due to discrimination
based on both her race and her gender, that she left in 1952 for a full-time job back
at the National Bureau of Standards. This was the beginning of the age of computing,
and Granville’s work (studying the design of fuses for missiles) brought her into contact
with mathematicians who worked as computer programmers. By the end of 1955, she
had transitioned into a job with IBM Corporation, and ended up working on an team
contracted to write software for NASA. Her software helped NASA prepare for the Project
Mercury missions by analyzing the orbits of satellites, and she was also involved in the
Apollo program. Granville wrote:

I can say without a doubt that this was the most interesting job of my life-
time - to be a member of a group responsible for writing computer programs
to track the paths of vehicles in space.

Granville returned to teaching in 1967, and taught computer programming and mathe-
matics, including math courses for future teachers, until her retirement in 1997.
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William Rowan Hamilton Ireland, 1805-1865

William Rowan Hamilton was such an exceptional stu-
dent that, before he graduated from Trinity College in
Dublin, they appointed him as a Professor of Astronomy,
in a position that technically made him the “Royal As-
tronomer of Ireland.” Though he had studied quite a
bit of mathematical work on both optics and dynamics
(the study of motion), he never spent much time actu-
ally observing the sky, and his interest was entirely in
pure mathematics.

At the beginning of the 1800s, mathematicians were
looking for a way to make imaginary numbers re- L
spectable. In the previous century, Euler had used the
symbol i = /-1, but without giving a clear definition
of what this could possibly mean. Following geomet-
ric work of Wessel (1797, Denmark) and Argand (1806,
France), Hamilton showed in 1831 that multiplying ordered pairs of real numbers ac-
cording to the formula (a, b)(c, d) = (ac — bd, ad + bc) made it possible to define i = (0, 1).
This concrete representation of v/—1 not only put an end to the controversy about the
existence of imaginary numbers, but provided an extremely useful way to visualize them.

William Rowan Hamilton

After this, Hamilton spent years looking for a way of multiplying ordered triples of real
numbers that had good algebraic properties, but couldn’t find one. (It's now known that
this problem is impossible, unless you don't insist on very good properties.) But one day
in October 1843, on a walk with his wife, Hamilton suddenly realized that he could define
a useful product in four dimensions, and celebrated by carving the necessary formulas
in the stonework on the Broome Bridge: i> = j? = k* = ijk = —1. He spent the rest of his
life studying the numbers a + bi + c¢j + dk, which he called “quaternions.”

Later, once people started using vectors, it became common to represent the quaternion
a + bi + ¢j + dk by the expression (a, U'), where ¢ stands for the vector (b, ¢, d). In this
notation, the product of quaternions leads to both the dot product and the cross product
(neither of which was known at the time): we have (0, 7)(0, W) = (-7 - @, ¥ x ).

Hamilton was a friend of the poet William Wordsworth, and wrote a lot of poetry himself,
usually when he was unhappy. He was often unhappy, partly because he spent his whole
life in love with a woman who was married to an older, richer man.

Hamilton thought deeply about the law of conservation of energy. To apply this law, he
developed the functions that are now called Hamiltonians, which give the total energy of
a physical system over time in terms of the momentum and position of the particles in
the system. Hamiltonian functions, suitably adapted, survived the revolution in physics
in the early 1900s, and today they are a critical part of every physicist’s toolbox.
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David Hilbert Germany, 1862-1943

In 1900, David Hilbert was the most influential math-
ematician in the world. He was a professor at the Uni-
versity of Gottingen in Germany, in the mathematics
department where Gauss and Riemann had taught. He
had proved a revolutionary new result in the field of
abstract algebra, called the Hilbert basis theorem. And
he had just published Grundlagen der Geometrie (Ba-
sics of Geometry). Here, he provided a new collection of
twenty-one axioms for Euclidean solid geometry (one
of which later turned out to be redundant), addressing
the instances where the Elements didn’t satisfy modern
standards of rigor. This axiomatic system carried extra
significance in the wake of nineteenth-century develop- David Hilbert

ments in non-Euclidean geometry, as mathematicians

and scientists were forced to pay extra attention to the

logical foundations of their areas of study. Hilbert’s axioms formed a new model for
mathematical practice, and more and more disciplines were formalized.

Hilbert gave a speech in Paris in 1900 whose importance cannot be overstated. Speak-
ing to the International Congress of Mathematicians, he listed twenty-three unsolved
problems which he considered top priorities for mathematical research in the twentieth
century. In fact, a lot of the mathematics community fell in with this plan: the “Hilbert
problems” are well known worldwide, and solving one of them is among the most pres-
tigious accomplishments that a research mathematician can dream of. Over half of the
problems have been solved completely, and progress has been made on all of them. In a
few cases, like the first problem (the “continuum hypothesis”), it is now known that no
solution is possible (which is, in its own way, a solution).

A century later, the Clay Mathematics Institute tried, fairly successfully, to duplicate
Hilbert’s achievement, and identified seven “Millennium problems” as challenges for
the twenty-first century. Of these, the Riemann conjecture is Hilbert’s eighth problem,
and the Birch and Swinnerton-Dyer conjecture is a refinement of his tenth problem.
While Hilbert had to rely on his reputation and persuasive ability to attract people to his
problems, the Clay Institute was able to take a different approach: they pledged a $1 mil-
lon prize for each of the solvers. However, when Grigori Perelman proved the Poincaré
conjecture in 2010, he turned down the money. The other six prizes are still on the table!

Hilbert is buried in Gottingen, under a tombstone that quotes the last six words of a
speech he gave in Kénigsberg in 1930:

Wir miissen wissen, wir werden wissen. (We must know; we shall know.)
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Carl Gustav Jacob Jacobi Germany, 1804-1851

Carl Jacobi came from a wealthy family, and was a stun-
ningly good student. By the age of 12, he had the qual-
ifications to enroll at the University of Berlin, but they
wouldn’t let him in until he was 16. He spent the time
doing advanced study on his own, working through Eu-
ler’s famous calculus text Introductio in analysin infin-
itorum, among other things. The result was that by the
time he got to college, he had learned most of what they
could teach him, and ended up doing self-study there
too. By the time he was 21, he earned his doctorate, and
got a job as a professor (though, in 19"-century Prussia,
he had to convert from Judaism to Christianity before
he could be hired).

Carl Gustav Jacob Jacobi

Just over two hundred years earlier, Bachet had conjec-

tured that every positive integer could be written as a

sum of four perfect squares: for example, 168 = 10 + 8% + 22 + 0. Lagrange proved this
conjecture in 1770, but Jacobi went further: he showed in 1834 that n can be written as
a sum of squares in k different ways, where £ is eight times the sum of the divisors of n
that aren’t divisible by 4. Specifically, there are 8(1 + 2 + 3 +6 + 7+ 14 + 21 + 42) = 768
different ways to write n = 168 as a sum of four squares, of which 192 can be found by
shuffling the four terms of 10 4 8* + 22 + 0? and/or changing the signs on the 10, 8, and 2.

Jacobi proved this and other facts in number theory by working with elliptic functions.

The “Jacobi elliptic functions” are a family of functions based on the “Jacobi amplitude,”
Lo . . ’ dt . . L
which is the inverse function of f(z) = ——— Jacobi and his Norwegian rival

0 1 —msin“t
Abel first suggested looking at such inverse functions, and it was extremely productive.

Calculus students know Jacobi’s name because of the Jacobian matrix, but Jacobi never
saw one himself! Jacobi died in 1851, the word “matrix” was first used in mathematics by
J.J. Sylvester in 1850, and the operation of matrix multiplication comes from two papers
published by Arthur Cayley in 1855 and 1858. However, determinants were (strangely)
known much earlier, and it was Jacobi who introduced the Jacobian determinant for
the first time, and developed a clear theory of determinants. He was also influential in
promoting the % notation for partial derivatives, which was first used by Legendre.

Jacobi was a hard worker, writing to a friend, “Certainly I have sometimes endangered my
health by overwork, but what of it? Only cabbages have no nerves, no worries. And what
do they get out of their perfect wellbeing?f|But it did eventually cause health problems,
and he travelled to Italy to recuperate in the milder weather, only to get disastrously
involved in politics and lose the support of his patron, the King of Prussia.
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Omar Khayyam Persia, 1048-1131

Ghiyath al-Din Abu al-Fath ‘Umar ibn Ibrahim Al-
Nishaburi al-Khayyam studied mathematics and as-
tronomy in his hometown of Nishapur, a large city on
the Silk Road in the modern nation of Iran. As a young
adult he joined the court of Sultan Malik-Shah I of the
Seljuk Empire, and was charged with opening an obser-
vatory and reforming the calendar. With his fellow scien-
tists, he was able to measure the length of a year, find-
ing a value that was accurate within a few millionths
of a day. Based on this computation, they invented the
Jalali calendar, still used in Iran in a simplified form. The
calendar includes 8 leap days every 33 years, and corre-
sponds to Earth’s orbit around the sun more precisely
than the Gregorian calendar that would be developed
in Europe 500 years later.

Omar Khayyam

In an early work, Khayyam solved the equation z* + 200z = 20z* + 2000 by a geometric
construction, and before long he managed to classify all cubic equations that could be
solved geometrically by intersecting conic sections. He was the first to show that such
cubic equations can have more than one solution, and the first to imagine a general
cubic formula, which would not be found until the 1500s. In a work that no longer exists,
he also showed how to calculate n™ roots using binomial coefficients — the numbers
that form what we call “Pascal’s triangle,” although Blaise Pascal was born in 1623.

Khayyam also took part in the long struggle to improve on the foundations of Euclidean
geometry. In his Commentary on the Difficulties Concerning the Postulates of Euclid’s
Elements, he identified errors and hidden assumptions in previous attempts to prove
Euclid’s parallel postulate, and in his own effort to do so he was the first to discover the
properties of what are now called Saccheri quadrilaterals in non-Euclidean geometry
(named after a man born in 1667). In the same book, he took important steps toward
the modern concept of real numbers by suggesting that it might be possible to consider
ratios to be numbers, and by showing that the different definitions of equality of ratios
given by Euclid and by Islamic scholars like al-Mahani were actually equivalent.

Despite the excellence of his mathematics, Khayyam may now be better known for a
collection of quatrains (four-line poems) attributed to him, which were translated into
English by Edward FitzGerald under the title The Rubaiyat of Omar Khayyam. These
include the famous verses, “The Moving Finger writes; and, having writ, / Moves on: nor
all your Piety nor Wit / Shall lure it back to cancel half a Line, / Nor all your Tears wash
out a Word of it,” as well as “A Book of Verses underneath the Bough, / A Jug of Wine, a
Loaf of Bread — and Thou / Beside me singing in the Wilderness — / Oh, Wilderness
were Paradise enowf!”
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Felix Klein Germany, 1849-1925

Felix Klein earned his Ph.D. from the University of Bonn
at the age of 19. He had wanted to learn physics, but his
doctoral advisor, Julius Pliicker, had shifted to working
on geometry. Within a few years, he became a profes-
sor at the Friedrich-Alexander University in Erlangen,
and it was there that he developed what we now call the
“Erlangen program.”

At the time, geometry was in turmoil, as Bolyai, Gauss,
and Lobachevsky had found consistent “non-Euclidean”
versions of geometry, in which Euclid’s parallel postu-
late was violated. Klein showed how to understand
these different discoveries within a single framework,
by insisting that geometry should be studied in terms of Felix Klein
transformations. Euclidean geometry was to be carried

out using “isometries,” like reflections and rotations:

transformations of the plane that preserve distances. He also gave a usable model for the
projective plane and its group of symmetries, and argued that the symmetries of a space
determine the properties that are worth studying in that space.

In fact, Klein was able to design a method of constructing a space so that Euclidean geom-
etry and non-Euclidean geometry occurred as special cases. This allowed him to prove
that non-Euclidean geometry couldn’t involve any contradictions, unless Euclidean ge-
ometry was also inconsistent. The standard viewpoint, that Euclid had described the
only possible shape for the physical universe, was overthrown in favor of the modern
philosophy that in any given context we should assume the geometric axioms that are
most convenient.

Two famous objects familiar to math students are named in honor of Klein. The “Klein
four-group” is the non-cyclic group with four elements: for example, the group of sym-
metries of a non-square rectangle. The “Klein bottle” is the most famous non-orientable
surface, formed (in a space of at least four dimensions) by connecting the ends of a
cylinder in the orientation that doesn'’t yield a torus.

Klein spent the second half of his life in Géttingen. The university’s reputation was al-
ready well established: it had been home to many famous mathematicians, including
Gauss. However, Klein was able to develop it into the world’s premier center of research
in mathematics and physics, bringing in Hilbert as the centerpiece. He also worked to
make the University admit women as students. He built up the Mathematische Annalen
(Mathematical Annals) until it was the most prestigious of all mathematical journals. He
was also interested in math education, and may be the single person most responsible
for making the concept of “function” part of a standard high-school education.
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Sofia Kovalevskaya Russia, 1850-1891

Sofia (“Sonia”) Kovalevskaya grew up in a wealthy family.
Her father was a general in the Russian military, and
the heir to a large estate, so she grew up in a manor
house, educated by private tutors. Among the family’s
friends was the author Fyodor Dostoevsky, who wanted
to marry Sofia’s older sister.

Her family redecorated, but they didn’'t order quite
enough wallpaper. Since the wallpaper had been or-
dered from far-off Saint Petersburg, they couldn’t get
another roll very easily, so the walls of Sofia’'s bedroom
were covered with the paper that was handy: the lec-
ture notes from the calculus classes her father had taken
while training to become an artillery officer. She got so
interested in algebra that her father got alarmed and
fired her tutor; she managed to borrow an algebra book
and hid it under her pillow, studying after dark.

Sofia Kovalevskaya

By chance, one of the family’s neighbors wrote a physics

textbook, and gave Sofia’s father a copy. In order to understand the book, she had to
teach herself trigonometry. When the neighbor found out, he pressed her father to let
her develop her mathematical talent, but he resisted. Ultimately, at eighteen, she found
a solution: she married, and (as was legally required then in Russia) got her husband’s
permission to go to school, first at the University of Saint Petersburg, then in Heidelberg
(where Kirchhoff was one of her lecturers), and finally in Berlin. Neither German uni-
versity would let Kovalevskaya enroll as a student, but in Berlin she was able to study
privately with the great Karl Weierstrass.

In her three years in Berlin, Kovalevskaya earned her doctorate, and wrote a world-class
paper on partial differential equations, but being a woman, she could not get a job as a
professor. She and her husband tried to apply their scientific ability to investing, but lost
everything. They separated, and financial troubles eventually drove him to suicide.

Finally, with help from the famous Swedish mathematician Gosta Mittag-Leffler, Ko-
valevskaya won the chance to teach, unpaid, for a year at the University of Stockholm.
Once she was in the door, she earned a chair as a professor, published new research,
became an editor of a journal, and won prestigious prizes from the French and Swedish
academies of Science. Now, according to biographer A. H. Koblitz, “Kovalevskaia was
indeed considered the equal of anyone of her generation.” Tragically, it didn’t last: she
got sick while traveling and died of pneumonia shortly after her 41% birthday.

Many universities now honor Sofia’s memory by celebrating “Sonia Kovalevsky Day” with
activities to encourage young women to get involved in math and other STEM subjects.
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Joseph-Louis Lagrange France, 1736-1813

Lagrange’s interest in mathematics was inspired by a
good teacher at his hometown college in Turin, Italy. He
took an interest in the “tautochrone problem,” which
had been solved in 1659 by Huygens. The goal was to
find a curve with the property that a frictionless mass,
initially at rest, always takes the same amount of time
to slide down the curve to its lowest point, no matter
where on the curve the mass starts out. Huygens had
shown that cycloids had this property. Lagrange gave
his own proof of this fact at the age of 18, and sent
his work to Leonhard Euler. Euler, who was at the time
the most influential mathematician in the world, wrote ]
back right away to say that he was impressed! Joseph-Louis Lagrange

Within a year, Lagrange had a job as a mathematics pro-

fessor in Turin, though he was never a good lecturer. He spent his life working on math-
ematical analysis of physics, and in Mécanique Analytique (1788), he presented the ap-
proach that is now called Lagrangian mechanics, in which energy, rather than force, is
the primary concept. The Lagrangian function gives the difference between the kinetic
and potential energy of a mass, and its integral with respect to time is the particle’s “ac-
tion.” In many contexts, it turned out that particles moved in such a way that their action
was minimized, or at least constant. Thus Lagrange was interested in finding minimum
values of multivariable functions, subject to various constraints, and he developed the

method of Lagrange multipliers to attack this problem.

Lagrange spent years studying astronomy, and in his investigation of the orbits of planets
and comets, he discovered how to solve linear differential equations by “variation of
parameters,” a method which is still taught in differential equations courses. He also did
pure math: In 1770, he proved that every natural number is a sum of four perfect squares.
He also analyzed why the roots of polynomials with degree 4 or less could be found using
formulas. Along the way, he proved that the number of polynomials that can be formed
by permuting the variables in a polynomial function is always a factor of n!, where n
is the number of variables that appear in the polynomial. After Lagrange’s death, when
later mathematicians defined the concept of a “group,” they rephrased and extended
this result to prove what is now called Lagrange’s theorem: The number of elements in a
finite group is always a multiple of the number of elements in any subgroup it contains.

From Turin, Lagrange moved to Berlin, and then to Paris, where he lived during the
French Revolution and the subsequent Reign of Terror. Having been born in Italy, he was
subject to arrest, and the loss of all his property. It was Antoine Lavoisier, the greatest
chemist of the era, who saved Lagrange from this fate (though he could not save himself,
and was guillotined in 1794). Lagrange survived into the following regime, and received
many awards, including the Legion of Honor, from Napoleon.
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Pierre-Simon Laplace France, 1749-1827

Pierre-Simon Laplace’s father sent him to school to
become a priest, but Laplace did so well in his math
classes that he dropped out and moved to Paris to
learn from the very influential mathematician Jean
d’Alembert. He quickly settled in as a professor at the
Ecole Militaire (Military School).

While studying the orbits of planets, Laplace introduced
the operator V2, the “Laplacian,” which is the diver-
gence of the gradient of a multivariable function. He
showed that gravitational potential energy satisfies the
equation V2u = 0, which is now called Laplace’s equa-
tion. Solutions of Laplace’s equation, called harmonic
functions, also occur in many other applications. Pierre-Simon Laplace

In 1809, in a “Memoir on approximations of formu-
las that are functions of very large numbers,” Laplace
solved a differential equation by assuming that the solution had the form y =
[ e** f(x) dz. Similar ideas had occurred previously to Euler and Lagrange, but it was
Laplace who developed them into a method. Still, the “Laplace transform” wasn'’t fully
developed in its present form until the 1930s and 1940s.

Throughout his career, Laplace studied probability, and in his book Analytic Theory of
Probability he brought together many fundamental techniques for computing and work-
ing with probability and statistics. In this book, he proved a special case of the famous
central limit theorem, showing that errors in large sets of astronomical observations
would follow a normal distribution (“bell curve”).

Considering his extensive work on probability, it seems odd that Laplace became famous
for his belief in determinism — that the future could be predicted perfectly given the
exact position and velocity of every particle in the universe. Of course, he didn’t claim
that humans could accomplish this: it would require a superintellect, sometimes called
“Laplace’s demon.” When Napoleon challenged him on trying to explain astronomy with-
out mentioning God, Laplace boldly replied, “I have no need of that hypothesis.”

Laplace was a great mathematician, but he was so arrogant about his skills that it dam-
aged his relationships with other scientists. It didn't help that he came through the politi-
cal upheaval of his time — the French Revolution, the Reign of Terror, Napoleon’s empire,
and the restoration of the monarchy — by willingly supporting whoever was in power at
any given moment. He was briefly Minister of the Interior for Napoleon, but was fired
after six weeks, according to Napoleon, “because he brought the spirit of the infinitely
small into government.” Still, Napoleon made Laplace a count, and King Louis XVIII later
elevated him to the rank of marquis.
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Pierre Laurent France, 1813-1854

Pierre Laurent was born in Paris, just as France was los-
ing the Napoleonic Wars. He was less than a year old
when his family moved to England, where his mother
had been born, and he didn’t return to France for about
ten years. He went to college in Paris, then joined the
military as an engineer and took part in the French inva-
sion of Algeria. When he returned to France, he worked
on improving the port at Le Havre, which became the
primary port in France.

During his time at Le Havre, Laurent began to work on
original research in mathematics. In 1842, when the
French Académie des Sciences published the topic for
their annual Grand Prix competition, Laurent sent in a Pierre Laurent

paper. Unfortunately, he submitted it after the deadline,

so it couldn’t win the prize, but it was still considered

for publication. One of the referees was the older, very

influential mathematician Augustin-Louis Cauchy (who had also served as a military
engineer). Cauchy took the opportunity to present his own proof of Laurent’s main the-
orem, based on a paper Cauchy had published in 1837. Though Cauchy gave a positive
review, his attempt to take credit for Laurent’s idea kept the paper from being published.

Since the time of Newton, it has been a standard technique to represent functions by
Taylor series. Laurent saw that it could be productive to allow negative exponents, espe-

cially when dealing with complex functions. For example, the function f(z) = — 1 can
z

)
n . 2n

be written, using the geometric series formula, as the Taylor series f(z) = Z(—l) z“",
n=0

but this only converges when |z| < 1. When |z| > 1, though, we can use creative algebra

to write

ad -1
1 1 1 n - - - B
f(z):§1+272:§ (—2_2) =z 2_24_‘_26_28_‘__”: E (_1)11—}—12277,.
n=0

n=—oo

Just like a Taylor series, this “Laurent series” can be integrated and differentiated as if it
were a polynomial, making it much easier to work with than the original formula.

Remarkably, Laurent wrote two more papers that were reviewed by Cauchy; Cauchy rec-
ommended both for publication, and both were rejected. Moreover, Cauchy nominated
Laurent to the Académie des Sciences, but he was not appointed. Laurent also wrote
about the theory of wave motion, applied to light waves and sound waves as well as to
waves in liquid, and once again, that work involved him in controversy with Cauchy, who
had taken a different approach to similar problems.
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Gottfried Wilhelm von Leibniz Germany, 1646-1716

Gottfried Leibniz is famous as the co-creator of calcu-
lus (along with Isaac Newton, who despised him), but
he was not originally motivated by mathematics itself.
His true goal was to organize all human knowledge into
a single organized system, and especially to create a per-
fectlanguage, the “universal characteristic,” of which he
wrote that “the symbols and even the words would di-
rect the reason; and errors, except those of fact, would
be mere mistakes in calculation.”

However, Leibniz saw that this project would have to
involve more mathematics than he (a philosopher with
a doctorate in law) understood, and he turned to the
physicist Christian Huygens for lessons. By 1675, Leib-
niz had surpassed Huygens, proving the fundamental
theorem of calculus. Newton had done the same nine
years earlier, but had not published. When Leibniz announced his own discoveries, New-
ton accused him of plagiarism, and the two were never reconciled, though Leibniz hon-
ored Newton’s work, saying, “Taking mathematics from the beginning of the world to
the time of Newton, what he has done is much the better half.” But it was Leibniz, not
Newton, who created the integral sign [ and the differential notation dz that we still use
today. He was also the first to use the dot - for multiplication, writing to Johann Bernoulli,
“I do not like x as a symbol for multiplication, as it is easily confounded with z....”

Gottfried Wilhelm von Leibniz

The concept of binary arithmetic, which is so fundamental to our computerized world
that it is hard to imagine life without it, was first proposed and developed by Leibniz. He
worked with Bernoulli on logarithms of negative numbers, a project that would eventu-
ally be resolved by Euler and perfected by Riemann. He also designed, and demonstrated
a partially complete prototype of, a mechanical calculator which could carry out addi-
tion, subtraction, multiplication, division, and square roots.

Beyond the world of mathematics, Leibniz worked as a diplomat working for peace in
the court of the King of France. He led mining projects, as part of which he was the
first to suggest that the Earth had hardened from an initial molten form, and a tireless
correspondent who was in constant scientific dialogue with hundreds of thinkers across
Europe. In his primary contribution to philosophy, Leibniz argued that everything in the
universe was made of “monads,” each of which had a form of consciousness, constantly
perceiving and being perceiving by all of the others. The simplest of these, he said, was
God, of whom all other monads are imitations. Since all existence imitates perfection,
he claimed, we live in the best of all possible worlds, which explains why bad things can
happen even under the control of an all-powerful and perfectly good God. Some aspects
of life make this theory difficult to accept fully, and the foolish Dr. Pangloss in Voltaire’s
Candide is a parody of Leibniz and his followers.
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Joseph Liouville France, 1809-1882

As a sixteen-year-old, Joseph Liouville entered the pres-
tigious Ecole Polytechnique in Paris. He took a calculus
class taught by André-Marie Ampeére, after whom the SI
unit of electrical current is now named. Cauchy, maybe
then the world’s most influential mathematician, also
taught there at the time, so Liouville was well positioned
to learn about the newest developments.

After graduating, he became a transportation engineer,
but his heart wasn't in it. Instead, starting in 1831, he
took jobs at a number of Paris schools at the same time,
including the Ecole Polytechnique. While teaching an
incredibly heavy load of courses, he studied the con- Joseph Liouville
ditions under which an algebraic function (one with

a formula expressible in terms of arithmetic, powers,

roots, exponentials, and logarithms) has an algebraic

antiderivative. This work was later used to prove that the antiderivatives of many func-
tions, such as f(z) = e*°, can’'t be expressed by any finite formula.

Liouville also spent time trying to prove that e is transcendental; that is, that no polyno-
mial with integer coefficients has e as a root. Though he didn’t succeed (Charles Hermite
was the first to figure it out, in 1873), he did manage to give the first explicit example of a
transcendental number, which is now called Liouville’s number:

L= 107" =0.1100010000. .,
k=1
with 1’s in the decimal places indexed by factorials, and 0’s in all other places. To do this,
he showed that, unexpectedly, transcendental numbers can be generally approximated
more closely by rational numbers with small denominators than algebraic numbers can.

By 1838, he had earned a full-time job as a professor at the Ecole Polytechnique. While
there, he proved, and announced in his lectures, that the constant functions are the only
bounded functions that are differentiable on the whole complex plane; this fact is now
called “Liouville’s theorem,” though Cauchy seems to have proved it first.

The beginning of Liouville’s career coincides with the French Revolution of 1830, as seen
at the climax of Victor Hugo'’s Les Miserables. In 1848, King Louis-Philippe was dethroned,
and Liouville was elected to the body that wrote the constitution for the new Second Re-
public. After several months, they established a democratic government under a directly
elected President, and the people responded by electing Emperor Napoléon’s nephew,
who before the end of his four-year term had used claims of a communist conspiracy to
dissolve the National Assembly and proclaim himself Emperor Napoléon III. Even before
this, Liouville had run for election to the Assembly and lost, and from then on he was
depressed and bitter.
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Colin Maclaurin Scotland, 1698-1746

The young Colin Maclaurin was such a good student
that he was admitted to the University of Glasgow at
the age of eleven. After studying a broad range of top-
ics, he presented a thesis on Newton’s theory of gravity,
graduated, and started studying to become a minister.
He gave that up after a year, though, and went home to
study math independently.

By the age of 19, he won a job as a professor at the Uni-
versity of Aberdeen. While there, he had the opportunity
to meet with Newton, and must have made a strong im-
pression, because he was elected to the Royal Society, a
distinguished group of England’s leading scientists. He
also left for two years to travel around Europe with a
diplomat’s son, without informing his school. Remark-
ably, he got his job back when he returned! He was an
excellent teacher: Alexander Carlyle, who led the Church of Scotland, later wrote:

Colin Maclaurin

Maclaurin was at this time a favourite professor, and no wonder, as he was
the clearest and most agreeable lecturer on that abstract science that ever |
heard.

After eight years, Maclaurin moved to the University of Edinburgh, assisted by a strong
recommendation from Newton, and taught there for the rest of his life. He helped to
create the theory of actuarial studies, and his work was applied by the Church of Scotland
in their charitable planning. His major achievement, though, was the publication in 1742
of his Treatise of fluxions, an organized and unified presentation of Newton’s calculus. A
major goal was to clarify the logical justification of the subject, which had come under
criticism; another was to show how the subject could be applied.

The Maclaurin series, the power series that converges to an arbitrary smooth function
f(z) on aninterval (—R, R), appears in the Treatise of fluxions, though Brook Taylor pub-
lished the idea over 25 years earlier. In fact, apparently James Gregory made the discovery
almost 50 years before that, but didn't realize it was new, and didn’t publish it. Also in the
Treatise, Maclaurin was the first to state and prove the integral test for convergence or
divergence of a numerical series.

Charles Stuart (“Bonnie Prince Charlie”), whose grandfather, King James II of England,
lost his throne in the Glorious Revolution of 1688, raised a rebellion in Scotland in 1745.
Maclaurin had a leading role in preparing to defend Edinburgh against the revolution-
aries, and had to flee to England when the city surrendered. His travels in cold winter
weather surely played a role in the illness that eventually took his life.
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Isaac Newton England, 1643-1727

Isaac Newton attended Cambridge University, planning
to study law. While there, in 1663, he bought a book
on astrology, but couldn’t understand it. This moti-
vated him to learn mathematics, and he dove into the
work of Euclid and Descartes, among others. Just after
he earned his bachelor’s degree, a plague forced Cam-
bridge to close, and Newton had to go home. It was in
1666, during this enforced isolation, that Newton first
recorded the fundamental theorem of calculus:

& [ = s

If Newton could see that equation, he would hate it, be-
cause it’s written in the notation invented by his rival,
the German philosopher Gottfried Wilhelm von Leib-
niz. The endlessly quarrelsome Newton was certain, mistakenly, that Leibniz had stolen
his ideas, and was only pretending to have discovered them himself. Newton’s hostility
was bitter enough that it seriously disrupted collaboration between mathematicians in
Britain and those in continental Europe for over a hundred years after his death.

Isaac Newton

When Leibniz published his own work on calculus, it forced Newton to do the same.
This took him until 1687, when he released the Principia (Mathematical Principles of
Natural Philosophy). This massive text first introduces some calculus, then develops the
universal theory of gravity, showing that Kepler’s laws of planetary motion follow from a
gravitational force between the sun and the planets that varies inversely with the square
of the distance between them. Besides its importance in physics, Newton’s theory of
gravity was a major shift in the scientific method: he argued that it was good enough to
predict the effect of the gravitational force between two heavenly bodies, even without
explaining how that force was transmitted across the space between them.

Newton also published a major text called Opticks, in which he studied the properties of
light, and showed for the first time that white light is composed of a spectrum of different
colors, which can be separated by a prism. He realized that light wasn't the same thing
as our perception of it: among other experiments, he inserted a blunt needle between
his eye and eye socket, recording the patterns he saw as he deformed his own eyeball.

Newton was a devoted alchemist, persistently seeking the famous “philosopher’s stone”
to turn other metals to gold, and he searched the Bible intently for secret messages about
the end of the world. In 1696, he took a job running the Royal Mint, which left him
little time to do new science. However, when Johann Bernoulli set two mathematical
problems as a challenge to the scientific community, Newton answered both in a single
day. Though he published his solution anonymously, its brilliance gave away his identity.
Bernoulli wrote, “tanquam ex ungue leonem.” (“We know the lion by his claw.”)
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Emmy Noether Germany, 1882-1935

Emmy Noether’s father was a professor of mathemat-
ics in the German university city of Erlangen. Initially,
she studied foreign languages, and earned a certificate
as a qualified teacher of English and French. However,

she changed her mind and began to study mathematics. ) P2
This was a challenge: women were not allowed to enroll y 3
in German colleges, and she had to get permission from Yo &
individual professors to attend their lectures. When this -

rule changed in 1904, the 22-year-old Noether officially
registered at Erlangen, earning her doctorate by 1907.

At the time, Noether could not be hired to teach because
she was a woman, but she began to publish papers, and
even supervised doctoral students, using her father’s
name on the official paperwork. At first, Noether spe-
cialized in the study of invariant polynomials: polyno-
mials in multiple variables whose formulas are symmetric in various ways. A simple
example is f(z,y) = z*y + zy*, which doesn’t change when the variables x and y are in-
terchanged. By working with linear combinations of polynomials, she developed a deep
understanding of mathematical structures that eventually reshaped abstract algebra.

Emmy Noether

In 1915 Noether was invited to move to Gottingen, where Hilbert and Klein were working
on the brand-new theory of relativity and needed an invariant theory specialist. She
quickly proved what physicists call Noether’s theorem: there is a conservation law for
every continuous symmetry in a physical system. She found ways to be productive even
while facing persistent gender bias. During the struggle to hire her officially to G6ttingen’s
faculty, Noether taught her own courses under Hilbert’s name. Even later in her career,
many of her results were published under the names of her male collaborators.

Once she became a professor in her own right, she began to study the structure of ideals
in ring theory. It was Noether who gave the modern abstract definition of an integral
domain in her important 1921 paper “Ideal theory in rings.” Famously, she and Hilbert
showed that many properties of polynomial rings follow from a single axiom: that in a
given ring there are no infinitely long sequences of nested ideals. Rings satisfying this
axiom are now called Noetherian.

Despite her growing fame, Noether, who was Jewish, lost her job in 1933 due to pressure
from the Nazi Party. It was unsafe for her to stay in Germany, and she left for a tempo-
rary position at Bryn Mawr College in Pennsylvania, which, as a school that only admits
women, would not discriminate against her on the basis of gender.

Sadly, soon after moving to the U.S., Noether was found to have cancer, and died at the
age of 53 after surgical complications.
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Blaise Pascal France, 1623-1662

Blaise Pascal was raised in Paris by his father, an am-
ateur mathematician, who home-schooled him, and
didn’t allow him to study mathematics. Naturally, this
prohibition fascinated Pascal, who proved, at the age
of twelve, that the sum of the three angles of a trian-
gle equals two right angles. This convinced his father
to give him a copy of Euclid’s Elements, and to let him
attend the meetings led by Marin Mersenne. When he
was sixteen, he presented some of his own work in pro-
jective geometry at one of these meetings. Among these
results was “Pascal’s mystic hexagram,” showing that if
a hexagon is inscribed in a conic section, then the three Blaise Pascal
points where opposite sides intersect are collinear.

In the 1640s, to help with his father’s work as a tax col-

lector, Pascal invented a mechanical adding machine: the first digital calculator. These
could handle the difficulties of French currency (240 deniers in one livre), and were ac-
tually manufactured, though not many were sold. It seems fitting, therefore, that one of
the first widely-used programming languages is named PASCAL in his honor.

After this, Pascal studied the question of the vacuum in nature. Aristotle had claimed
that an empty physical space was impossible (“nature abhors a vacuum”), but Torricelli
had done an experiment that suggested otherwise: he turned a glass tube full of mercury
upside down in a bowl of mercury, with the opening under the surface, and it didn’t empty
completely. Instead, a vacuum formed in the top of the tube, with air pressure on the
exposed surface holding up the rest of the liquid. Pascal strengthened that experiment:
he had his brother-in-law carry the whole apparatus up a high mountain, and watch as
the mercury level in the tube dropped. This proof that air has weight is why the SI unit
of pressure is called the Pascal.

Gambling was one of Pascal’s hobbies, and this led a nobleman to ask why he kept losing
at a dice game where he thought the odds would be in his favor. In an effort to answer
this question, Pascal established the first mathematical theory of probability in a brief
correspondence with Pierre de Fermat. In solving these problems, he made use of what
we call “Pascal’s triangle,” though in China, Yang Hui had written it down before 1300.

After his father died, Pascal wrote Pensées (Thoughts), a book of Christian philosophy.

Among other things, he argues there that it is rational to believe in God simply on the
basis of expected value. His argument, known as “Pascal’s wager,” has become famous:

Let us weigh the gain and loss in wagering that God exists. Let us estimate
these two chances. If you gain, you gain all; if you lose, you lose nothing.
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Henri Poincaré France, 1854-1912

Henri Poincaré belonged to a distinguished family: his
cousin Raymond was President of France during World
War I (though he took office just after Henri’s untimely
death). As a child, Poincaré was an excellent student
in all subjects, but especially mathematics, in which
he won national competitions. His math teacher called
him a “monster of mathematics,” a judgment which
would stand the test of time.

Poincaré earned his doctorate at the University of Paris
while working on the side as a mining engineer. He
became a professor, and his lectures were regarded as
somewhat disorganized. His research, too, was some-
times more intuitive than rigorous. However, his knowl-
edge was both broad and deep, and he made major dis-
coveries in multiple fields.

Henri Poincaré

When Poincaré was in his prime, the subject of topology was in its infancy. His 1895
book Analysis situs established the structure of that discipline. In particular, he was the
first to introduce the ideas of algebraic topology, in which algebraic objects like groups
are used to identify the properties of geometric spaces. In 1894, Poincaré defined the
fundamental group, in which the elements are equivalence classes of closed paths. He
used this and similar objects in an attempt to classify spaces. One of his predictions in
that direction became known as the Poincaré conjecture; in 2000 the Clay Mathematics
Institute made this one of their seven Millennium Problems, with a million-dollar prize
for a proof. (This is the only Millennium Problem that has been solved, and remarkably,
Grigori Perelman, the solver, turned down the money:.)

Poincaré also deserves credit, with Albert Einstein and Hendrik Lorentz, for the special
theory of relativity. He was one of the pioneers in showing that non-Euclidean geometry
was consistent, and his model of projective geometry, known as the Poincaré disk model,
is still one of the most natural ways to describe what it could mean for a plane to be
non-Euclidean. Also, in his important work on the three-body problem, he was the first
to identify the phenomena that developed into chaos theory.

It happens that in 1897 a psychologist named Edouard Toulouse studied Poincaré’s cre-
ative process and recorded his findings in a book.Toulouse wrote, “He will normally start
[writing a paper] without knowing where it will end. ... [T]he work seems to lead him
on without him making a wilful effort.” Describing his own attitude about his studies,
Poincaré wrote, “The scientist does not study nature because it is useful; he studies it
because he delights in it, and he delights in it because it is beautiful. If nature were not
beautiful, it would not be worth knowing, and if nature were not worth knowing, life
would not be worth living.”
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Srinivasa Ramanujan India, 1887-1920

In 1903, in a medium-sized city in India, the high school
student Srinivasa Ramanujan was handed a library
book: A Synopsis of Elementary Results in Pure and Ap-
plied Mathematics by G.S. Carr. It contained thousands
of formulas and theorems without proofs, and Ramanu-
jan, after studying its contents, began to expand on
them. As he started college, though, he spent all of his
time on math, neglecting his other schoolwork, and lost
his scholarship because of it. Without telling his par-
ents, he left the college, eventually ending up in Madras,
where he took the university entrance exam, but only
passed the mathematics portion, and couldn’t get in.

Srinivasa Ramanujan

With very little money or support, Ramanujan kept up
his research, and as India was under direct British rule
at the time, he sent examples of his work to several En-
glish mathematicians. Following the example of Carr’s book, he did not include proofs.
The well-regarded mathematician G.H. Hardy sent a letter that was quite encouraging
about Ramanujan’s discoveries — Hardy later wrote,

A single look at them is enough to show that they could only be written
down by a mathematician of the highest class. They must be true because, if
they were not true, no one would have had the imagination to invent them ]

Ramanujan replied to Hardy’s letter, “I am already a half starving man. To preserve my
brains I want food and this is my first consideration. Any sympathetic letter from you will
be helpful to me here....” Before long, Hardy had arranged for Ramanujan to move to
England. Cambridge awarded him a bachelor’s degree, later upgraded to a doctorate, on
the basis of his research. Hardy’s collaborator, J.E. Littlewood, helped to teach Ramanu-
jan some of the things he would have learned in college, but “it was extremely difficult
because every time some matter, which it was thought that Ramanujan needed to know,
was mentioned, Ramanujan’s response was an avalanche of original ideas. .. ."Iﬂ

Ramanujan proved stunning new identities, especially about the partition function, but
sadly his health continued to fail. His time in England was largely spent in nursing homes
being treated for tuberculosis, a misdiagnosis. He returned to India in 1919, hoping the
familiar climate and diet would help, but died in 1920 at the age of 32, likely from a liver
infection. The notebooks he left behind are still a fruitful source of new ideas.
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Alfréd Rényi Hungary, 1921-1970

Alfréd Rényi was an excellent student whose interest in
astronomy led him to mathematics. His college stud-
ies had to be postponed, though, because in 1939, Bu-
dapest University imposed a limit on the number of
Jewish students. He managed to enroll a year later, af-
ter working in a shipyard during his “gap year.” Once
he graduated, Hungary’s pro-Nazi government con-
scripted him into a forced-labor battalion, but he man-
aged to escape. By getting fake identification papers, he
was able to stay in Budapest, and even saved his parents
by impersonating a soldier and removing them from the
ghetto in which they had been confined.

Alfréd Rényi

Despite the obvious difficulties, Rényi managed to earn
his doctorate during World War II. Once the war ended,
he spent a year in Russia, where he made important
progress on two major problems in number theory: the Goldbach conjecture and the
twin prime conjecture.

Back in Hungary, he began to focus on probability theory and its applications across
all fields of math. He wrote the first probability theory text in the Hungarian language,
starting from his own new set of axioms. With the famously eccentric and productive
mathematician Paul Erdos and others, he blended probability with number theory and
combinatorics. For example, he defined the Erd6s-Rényi model of random graphs, and
used it to give clever proofs that certain elusive types of graph do actually exist, by finding
a positive probability that a randomly generated graph is of the desired kind.

Rényi remembered that math is fun. He described his profession in a memorable way:

A mathematician is a machine for turning coffee into theorems.

[His teacher and friend Paul Turdn, who had opinions, claimed that American coffee
was only good for lemmas.] But in a more serious vein, he also wrote the Dialogues on
Mathematics, using Socrates, Archimedes, and Galileo as characters, to help the public
understand what math is, and to share the joy he found in working as a mathematician.

Rényi summed up his approach to his work in one simple remark:

If I feel unhappy, I do mathematics to become happy. If I am happy, I do
mathematics to keep happy.

Image: MacTutor, https://mathshistory.st-andrews.ac.uk/Biographies/Renyi/

James A. Swenson Math History Nuggets


https://mathshistory.st-andrews.ac.uk/Biographies/Renyi/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bernhard Riemann Germany, 1826-1866

Georg Friedrich Bernhard Riemann studied math with
Dirichlet and others at Berlin University, then earned
his doctorate at the University of Gottingen, with Gauss
as his advisor. In his Ph.D. thesis, Riemann studied the
properties of complex functions, and introduced fun-
damental ideas in complex analysis, including what we
now call the Riemann mapping theorem, the Cauchy-
Riemann equations (though these were known much
earlier), and Riemann surfaces.

In the German system, Riemann now had to write a sec-
ond thesis (his “Habilitation”) to earn a job as an inde-
pendent university lecturer. Gauss assigned the topic:
the foundations of geometry. Riemann, who had al- Bernhard Riemann
ready made major discoveries in a different field, was

stunned and discouraged, but eventually succeeded in

writing the paper (“On the hypotheses which underlie

geometry”), and it was revolutionary: he invented the “Riemannian manifold” and the
concept of the curvature of space, which would turn out to be exactly what Einstein
needed for his general theory of relativity.

Calculus students learn about Riemann when studying the Riemann sum:

b n
[ rtardn = 1w 3" p(e) A

This is how we define the definite integral now, but integrals were around long before
Riemann. Cauchy, in 1823, was the first person to give a formal definition of definite
integrals for continuous functions. But to work with Fourier series, it was important to
be able to integrate non-continuous functions too, and as part of his habilitation thesis,
Riemann extended Cauchy’s work to apply in that context.

The prime-counting function r, for which = (z) represents the number of primes less than
or equal to z, was an important object of study at the time (and still is). While seeking
a formula for 7 (), Riemann had to work with the function ((z) = >, =, which we
now call the Riemann zeta function. He conjectured that if ((z) = 0, then either z is an
even negative integer or z = ; + iy for some real number y. This claim is the “Riemann
hypothesis,” and it still hasn’t been proved or disproved: doing so is one of the Clay
Mathematics Institute’s Millennium Problems, with a million-dollar prize attached.

Sadly, Riemann caught tuberculosis while still quite a young man, and died before his
40 birthday.
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Michel Rolle France, 1652-1719

Michel Rolle didn’t have the opportunity to go to school 3
past the elementary level, but studied math on his own, Q f'&)=0
and did well enough that as a young man living in Paris,

he solved a challenge problem published by a success- _ =/
ful textbook author. Powerful people noticed: he got [ |\
hired as a private tutor for the son of the Marquis de

Louvois, who was France’s Secretary of State for War. In L g ; X
just a few years, Louvois got Rolle named to the Royal
Academy of Sciences, so he was able to discuss mathe- Michel Rolle

matics with the leading experts in Paris.

In 1690, Rolle published the book Traité d’algebre (“Trea-

tise on algebra”), in which the radical notation </z for n™® roots appears for the first time.
The next year, he put out another work in which he justified some of the methods he
had used in the Traité without proving their validity. Here he shows that if f(a) = f(b)
with a # b, then there is some ¢ between a and b where f’(c) = 0. It took 150 years before
someone called this “Rolle’s theorem” for the first time. In the same work, Rolle started
using the “=" sign to represent equality: this was invented in 1557 (!) by Robert Recorde
in England, but it still wasn’'t common in Rolle’s time. Finally, Rolle committed to another
rule that now seems very natural: When you compare two negative numbers, the one
closer to zero is greater than the other. This, too, went against the standard practice that
had been established by Descartes.

Although he is remembered for a theorem in differential calculus, Rolle was strongly
critical of that subject. He argued in the Academy of Sciences that it was wrong to treat
differentials as infinitesimal changes in variables:

[E]xactness does not reign anymore in geometry since the new system of
infinitely small quantities has been mixed to it. I do not see that this system
has produced anything for the truth and it would seem to me that it often
conceals mistakes.

At that time (1700), the Academy could not determine whether Rolle was right about this
or not, and the arguments were so fierce that they banned further debate on the subject.
In the end, Rolle conceded that he had been wrong, but by modern standards, maybe he
wasn't! As Rolle demanded, we now do calculus in the context of the real numbers, where
there are no infinitely small quantities. The definitions that make this possible were only
established by Cauchy and Weierstrass in the 1800s.

At the age of 56, Rolle suffered a stroke, which put an end to his research, though he
lived another 11 years before dying of a second stroke. As far as we know, there aren’t any
pictures of Rolle; the one that you see online most often is actually a portrait of Leibniz.

Image: Fs448445223 via Wikimedia Commons, https://tinyurl.com/rollesthm.
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J. J. Sylvester England, 1814-1897

James Joseph was born in England in 1814. He only took
the last name Sylvester as a teenager, when his brother
found out that he couldn’t move to the United States
without having a first, middle, and last name. He started
college at fourteen, in the brand-new University College
London, with the famous logician Augustus De Morgan
for a teacher. However, he didn't last a full year there,
leaving in a hurry after he was accused of threatening
another student with a knife in the cafeteria.

A few years older and wiser, he enrolled at Cambridge
University, where he was a student for six years — he
was sick for quite a while and wasn'’t able to be at school J. J. Sylvester

for about two years. Though he was an excellent math

student, he did not graduate from Cambridge because

he was Jewish, and was not willing to swear that he believed in the doctrine of the Church
of England. Despite his lack of a degree, he became a professor of natural philosophy
(physics) at the University of London, where De Morgan was also working.

Wanting to find a job teaching mathematics, Sylvester left England to serve as a profes-
sor at the University of Virginia. His colleague William Rogers wrote that Sylvester “was
terribly embarrassed at his first lecture, indeed quite overwhelmed, but has been doing
better since. He has a good deal of hesitation, is not fluent, but is very enthusiastic....”
However, he met with antisemitic protests, as well as accusations of “ignorance of our
peculiar Institutions” (that is, slavery). He and other faculty had to fear actual violence
from the students. Eventually, when Sylvester objected to a student’s misbehavior (read-
ing a newspaper in class), he and his brother demanded an apology, and hit Sylvester
in the head with a club. Sylvester, however, was carrying a sword-cane, and he drew the
blade and stabbed the student. Not waiting to learn that he had not seriously hurt the
man, he abandoned his job and returned to England.

Back in London, Sylvester worked as an actuary and as a private math tutor (with Flo-
rence Nightingale among his students), and studied law, where he met the great alge-
braist Arthur Cayley. He began to do his own important work in linear algebra, and be-
came a professor at the Royal Military Academy. Forced to retire at age 55, he eventually
moved back to the United States, becoming a professor at Johns Hopkins in Baltimore.
During his seven years there, he started the first journal of mathematics in the U.S. He
then spent ten years as a professor at Oxford before finally retiring to London.

Sylvester’s greatest impact was probably on the vocabulary of mathematics: he gave us
such terms as matrix, discriminant, isomorphism, and many others. Referring to the
Biblical story of the naming of the animals, Sylvester wrote, “Perhaps I may without
immodesty lay claim to the appellation of Mathematical Adam, as I believe that I have
given more names... than all the other mathematicians of the age combined.”

Image: MacTutor, https://mathshistory.st-andrews.ac.uk/Biographies/Sylvester/

James A. Swenson Math History Nuggets


https://mathshistory.st-andrews.ac.uk/Biographies/Sylvester/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Brook Taylor England, 1685-1731

Besides his interest in mathematics, Brook Taylor had
a good education in painting and music. His well-off
family (his father was a member of Parliament, and his
mother’s father was a baronet) hired private tutors for
him, and he would later do original mathematical work
related to both. In his charmingly-titled 1715 book Lin-
ear Perspective: Or, a New Method of Representing Justly
All Manner of Objects as They Appear to the Eye in All Sit-
uations, he was the first to thoroughly study vanishing
points in perspective drawing.

After graduating from Cambridge in 1709, Taylor
worked to refine the ideas he'd developed in college. He
was elected to the prestigious Royal Society in 1714, and
served for four years as their Secretary.

Brook Taylor

In 1715, Taylor published the book Methodus incremen-

torum directa et inversa, in which he introduced the “Taylor series” for which he is best
remembered. Though it’s named after him, Taylor was not the first to work with Taylor
series; they were already used by both Newton and Leibniz, among others. Taylor redis-
covered the series through his work related to Kepler’s problem on planetary motion. He
writes in his book that he was inspired by a conversation he had in a coffeehouse with
his former tutor John Machin. Joseph-Louis Lagrange, nearly sixty years later, was the
first to single out Taylor series as a fundamental idea in calculus.

Though the introduction of Taylor series would have been enough to make the book
memorable, Taylor also invented the method of integration by parts in Methodus incre-
mentorum directa et inversa. The same book also contains the first study of what we now
call the “calculus of finite differences.”

Taylor was deeply involved in the bitter priority disputes between mathematicians in
England and continental Europe. He was part of the English committee formed to de-
termine whether Leibniz or Newton was responsible for the discovery of calculus. (The
committee gave credit to Newton, but since all the members were English and most
were Newton’s personal friends, their judgment wasn't taken very seriously in France or
Germany.) In a series of public letters, he exchanged strong words and mathematical
challenges with Johann Bernoulli and others.

Taylor married against his parents’ will, causing a break in their relationship. Sadly, his
wife died in childbirth, and Taylor moved back in with his parents. They reconciled well
enough that Taylor inherited his parents’ estate. He remarried, and his second wife also
died giving birth to a daughter. Taylor himself died the following year, of unknown causes,
at the age of 46.
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Valerie Thomas United States, 1943—

At the age of eight, Valerie Thomas went to the library
and checked out a book called The Boy’s First Book on
Electronics. She took it home to her father, who was
interested in taking apart radios and other home elec-
tronic devices, but she couldn’t get him to work on the
projects with her: he didn’t think it was a good hobby
for girls. When she was a little older, she went to an all-
girls high school, which had only recently been racially
integrated. The school was supportive in some ways,
but didn’t offer her the opportunity to participate in ad-
vanced classes in math and science.

e

Valerie Thomas

It was when Thomas went to college at Morgan State
University, a historically black university in Baltimore,
that she finally received real encouragement. She grad-
uated with honors, majoring in physics, and took a job
at NASA working as a data analyst. She said that when
she got there in 1964,

I had not seen a computer except in science fiction movies. Since my job
involved writing computer programs, I decided to learn as much as possible
about computers.

NASA assigned her to work with Landsat, the first family of satellites that could take
pictures of Earth from space. Thomas wrote the computer code (on key punch cards, fed
into a shared office computer) that translated the raw data from the satellite into visual
images that people could use, including false-color images that displayed properties like
temperature or vegetation. She then leveraged that data to make it possible, for the first
time, to use satellite imagery to predict wheat harvest data around the world.

Between 1976 and 1978, Thomas invented and patented a tool called the “illusion trans-
mitter,” which uses concave parabolic mirrors to send three-dimensional images (in the
form of stereographic optical illusions) in real time across long distances, and which is
still used by NASA today.

Thomas also worked in the Space Physics Analysis Network. There she worked on the
Voyager spacecraft project, among others. By the time she retired in 1995, Thomas was as-
sociate chief of NASA's Space Science Data Operations Office, and received the Goddard
Space Flight Center Award of Merit. She has been an active mentor for many students,
most recently through organizations like Shades of Blue, which focuses on helping young
people to pursue careers in aviation and aerospace. Since her retirement, she has worked
to inspire students by serving as a substitute teacher in a Baltimore-area high school.
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Karen Uhlenbeck United States, 1942—

Born in Cleveland, Ohio, Karen Uhlenbeck (née Keskulla)
grew up in New Jersey, a curious girl who loved reading,
art and music, and the outdoors. She went to college

at the University of Michigan, and then went to grad

school at New York University. While there, she married

Olke Uhlenbeck, a biophysicist who later did important

research on RNA. When he started his doctoral program

at Harvard University, she went along, meaning she had

to restart her graduate work at a new school — Brandeis

University.

After earning the Ph.D. in 1968, she had trouble finding
a suitable job as a professor: many schools were sim-
ply not willing to consider hiring a woman. She joined Karen Uhlenbeck

the faculty of the University of Illinois, first at the main

campus and then at UI-Chicago. Her excellent work on

partial differential equations earned her a MacArthur

Fellowship, a significant honor, which comes with a major, no-strings-attached cash
prize, and is commonly referred to simply as “the genius grant.” Since that time, Uhlen-
beck has worked at the University of Chicago, the University of Texas at Austin, Princeton,
and the Institute for Advanced Study.

Uhlenbeck helped to create the field of geometric analysis, in which differential equa-
tions are used to study the properties of geometric (or topological) spaces. Uhlenbeck
made it possible to use “instantons,” which are non-trivial solutions to the equations de-
scribing how fields (like electromagnetism and gravitation) interact with matter. These
partial differential equations, the “self-dual Yang-Mills equations” and other “Yang-Mills
theories,” are foundational to what we now call the Standard Model of elementary par-
ticle physics. Uhlenbeck’s classic 1984 textbook, Instantons and 4-Manifolds, written
jointly with Dan Freed, includes her famous “removable singularities theorem” as an
appendix. This book, and Uhlenbeck’s work around it, helped to shape research in math-
ematical physics for decades to come.

Uhlenbeck has won a dizzying array of awards, culminating, in 2019, with the Abel Prize.
Named for the great 19th-century Norwegian mathematician Niels Henrik Abel, this
award is presented by the King of Norway, and carries a prize of 7.5 million Norwegian
kroner (a little over $700,000). Along with the Fields Medal (which is awarded only to
mathematicians under the age of 40), the Abel Prize is regarded as the highest honor in
mathematics, comparable to a Nobel Prize. The award citation honors “her pioneering
achievements in geometric partial differential equations, gauge theory and integrable
systems, and. .. the fundamental impact of her work on analysis, geometry and mathe-
matical physics,” and adds that “her ideas and leadership have transformed the mathe-
matical landscape as a whole.”
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Karl Weierstrass Germany, 1815-1897

Karl Weierstrass wanted to be a mathematician — he
was already reading mathematical research journals in
high school — but his father insisted that he study fi-
nance in college. At the university, forbidden to pursue a
math degree and indifferent to economics, he spent his
time drinking and fencing, then dropped out of school
after four years. Furious, his father sent him to a new
school, where he could study to become a math teacher.
He went willingly, because there he'd also have the op-
portunity to learn from a professional mathematician.

Weierstrass did finish this program, and spent the next
decade teaching high school. While there, he didn’t have
other mathematicians to talk to, and he wasn’t in good Karl Weierstrass

health. Still, he spent all of his free time thinking about

mathematics, and it paid off. As he turned 40, he pub-

lished a pair of major papers in an extremely influential journal that circulated all across
Europe. The results were everything he could have asked for: suddenly, he was a super-
star. He was awarded an honorary doctorate, and started to get job offers. Eventually he
became a professor at the University of Berlin, and many of his students there (including
Kovalevskaya, Mittag-Leffler, and Cantor) ended up achieving great things.

Weierstrass devoted most of his research to the study of analytic functions: complex
functions that, near any given point z; in the domain, can be written in the form of a

power series f(z) = Z an(z — 29)". Normally the domain of such a series is only a disk

n=0
in the complex plane, but Weierstrass showed how to join these disks together to build
up the “analytic continuation” of f(z). On the real side of things, he showed that any
function with domain [, b] can be approximated as closely as you want by a polynomial
— great news, since evaluating a polynomial just involves multiplying and adding.

It was Weierstrass who first gave (in 1861) the modern definition of the limit in terms
of real numbers, and he invented the familiar lim,_,, notation. He was then able to de-
fine, for the first time, what it means for a function f(z) to be continuous at a. Using
these definitions, he achieved a goal set earlier by Riemann: he found a family of specific

functions, like f(z) = Z

cos4d"x . . .
which were continuous everywhere, but were not dif-

on
n=1

ferentiable anywhere! (Even more astonishing, Banach would later prove that almost all
continuous functions are nowhere differentiable: it turns out that the smooth functions
that we usually study are really the outliers.) This shocking pair of properties motivated
a lot of new work, forcing mathematicians to reach beyond their intuitive ideas about
functions and recognize a larger, stranger world of possibilities.

Image: MacTutor, https://mathshistory.st-andrews.ac.uk/Biographies/Weierstrass/
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